Preparation of tunable hollow composite microfibers assisted by microfluidic spinning and its application in the construction of in vitro neural models

超细纤维 微流控 材料科学 生物医学工程 纺纱 自愈水凝胶 脐静脉 微通道 组织工程 纳米技术 明胶 体外 复合材料 化学 高分子化学 工程类 生物化学
作者
Jingyun Ma,Wei Li,Lingling Tian,Xinghua Gao
出处
期刊:International Journal of bioprinting [Whioce Publishing Pte Ltd.]
卷期号:10 (1): 1797-1797 被引量:3
标识
DOI:10.36922/ijb.1797
摘要

Microfluidic spinning, which has recently emerged as an important approach to processing hydrogels, can handle the flow in the fluid channel and generate microfibers in a controlled and mild manner, and therefore, it is suitable for cell loading, long-term culture, and tissue engineering. In this study, we utilized three-dimensional (3D) printing technology to prepare microfluidic chip templates with different microchannel heights in a one-step manner and obtained microfluidic spinning and microfiber assembly microchips. Hollow calcium alginate (CaA)/gelatin methacrylate (GelMA) composite microfibers were successfully prepared using a microfluidic spinning microchip combined with different fluid-injection strategies. The obtained hollow microfibers had one, two, or three lumens, and different inclusions could be added to the fiber walls. Hollow microfibers with a single lumen were used to load human umbilical vein endothelial cells (HUVECs) and exhibited good cell compatibility and barrier functions. We constructed a neural model based on the HUVEC-loaded hollow microfibers using a customized 3D printer. Using this established neural model, we induced the neural differentiation of rat adrenal medullary pheochromocytoma cells (PC12) using nerve growth factor. Axonal length, tubulin expression, and related gene (GAP-43 and TH) expression in PC12 cells were assessed. The current findings underscore the potential of utilizing microfluidic spinning in in vitro blood–brain barrier simulation, neuropharmaceutical and toxin evaluation, and brain-on-a-chip construction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Proudmoore发布了新的文献求助10
刚刚
cryscilla完成签到,获得积分10
刚刚
WIN完成签到,获得积分10
1秒前
1秒前
666发布了新的文献求助10
1秒前
1秒前
诺一44发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
3秒前
张永明发布了新的文献求助10
3秒前
3秒前
专注灵凡发布了新的文献求助10
4秒前
可爱的函函应助n0rthstar采纳,获得10
4秒前
沧化完成签到,获得积分10
4秒前
隐形曼青应助王一采纳,获得10
4秒前
饮湖完成签到,获得积分10
7秒前
黄小渣完成签到,获得积分10
7秒前
7秒前
桐桐应助富婆采纳,获得10
8秒前
8秒前
8秒前
CodeCraft应助自行输入昵称采纳,获得10
8秒前
Ly发布了新的文献求助10
8秒前
9秒前
9秒前
温水完成签到 ,获得积分10
9秒前
joy完成签到,获得积分10
10秒前
奋斗的小彭完成签到,获得积分10
10秒前
FWY发布了新的文献求助10
12秒前
轻松的小白菜完成签到,获得积分10
13秒前
顾矜应助蒋中豪2.0采纳,获得10
13秒前
liyun发布了新的文献求助10
13秒前
13秒前
Orange应助悦动采纳,获得10
13秒前
zkexuan发布了新的文献求助10
14秒前
科研通AI5应助张永明采纳,获得10
15秒前
王大锤发布了新的文献求助10
15秒前
皮皮灰熊应助潘俊杰采纳,获得10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3560580
求助须知:如何正确求助?哪些是违规求助? 3134540
关于积分的说明 9408040
捐赠科研通 2834699
什么是DOI,文献DOI怎么找? 1558213
邀请新用户注册赠送积分活动 727980
科研通“疑难数据库(出版商)”最低求助积分说明 716656