Optimal reconciliation of hierarchical wind energy forecasts utilizing temporal correlation

等级制度 计量经济学 协方差 系列(地层学) 协方差矩阵 计算机科学 可识别性 风力发电 统计 数学 数据挖掘 经济 工程类 地质学 古生物学 电气工程 市场经济
作者
Navneet Sharma,Rohit Bhakar,Prerna Jain
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:301: 118053-118053
标识
DOI:10.1016/j.enconman.2023.118053
摘要

Independent wind energy forecasts of a wind farm at different time horizons have limited accuracy, and they show disagreement despite relating to the same wind farm. The limited forecast accuracy is attributable to the insufficient information at a particular time horizon of the wind energy time series, whereas applying distinct forecasting methods to several time series of non-identical patterns at different time scales causes disagreement among forecasts. Mutual disagreement among less accurate forecasts negatively impacts the decision-making capabilities in associated power systems activities at distinct time scales. The configuration of time series expressing different time horizons at different levels of a non-overlapped hierarchically aggregated framework manifests a temporal hierarchy. Forecast combination through reconciliation of time series forecasts drawn at different hierarchical levels of temporal hierarchy using any state-of-the-art method facilitates the sharing of diverse information across the hierarchy; consequently, accuracy and mutual agreement of forecasts improve. Such benefits may be further enhanced by embedding intra- and inter-level forecast error correlations in the forecast reconciliation process. However, the forecast error covariance matrix of temporal hierarchy becomes a complex high-dimensional structure while accommodating intra- and inter-level correlations. Estimating such a matrix is challenging since the high-dimensional structure severely impedes the identifiability of model parameters. Besides, in the hierarchical forecast reconciliation process, the number of predictor variables is generally higher than the number of samples. This condition gives rise to a singular covariance matrix, making it non-invertible, and thus obstructs its parameter estimation. This work employs the MinT(shrinkage) covariance matrix estimator that considers all correlations and shrinks the non-diagonal components of the matrix toward zero to avert the complexity and, therefore, the non-identifiability. Additionally, the shrinkage parameter λ of MinT(shrinkage) conveniently obtains the invertible matrix. The case study validates that while incorporating the intra- and inter-level forecast error correlations, MinT(shrinkage) provides competitively accurate and mutually agreed forecasts over other reconciliation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YY完成签到 ,获得积分10
1秒前
niupotr发布了新的文献求助10
1秒前
kyky发布了新的文献求助10
3秒前
无花果应助人间烟火采纳,获得10
3秒前
MOMOMOMO完成签到,获得积分10
4秒前
6秒前
在水一方应助科研通管家采纳,获得10
7秒前
田様应助科研通管家采纳,获得150
7秒前
英姑应助科研通管家采纳,获得10
7秒前
双黄应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
烟花应助科研通管家采纳,获得10
7秒前
7秒前
ding应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
临江仙应助科研通管家采纳,获得50
8秒前
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
9秒前
10秒前
科研小菜发布了新的文献求助10
10秒前
11秒前
吃猫的鱼完成签到 ,获得积分10
14秒前
哈哈哈哈发布了新的文献求助10
14秒前
从容谷菱发布了新的文献求助10
15秒前
4.8关闭了4.8文献求助
17秒前
医无止境发布了新的文献求助10
18秒前
19秒前
谨慎的啤酒完成签到 ,获得积分20
20秒前
电池小白996完成签到,获得积分20
21秒前
领导范儿应助张潇潇采纳,获得10
22秒前
Akim应助xwqs采纳,获得10
24秒前
次次发布了新的文献求助10
24秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267951
求助须知:如何正确求助?哪些是违规求助? 2907366
关于积分的说明 8341705
捐赠科研通 2577991
什么是DOI,文献DOI怎么找? 1401497
科研通“疑难数据库(出版商)”最低求助积分说明 655037
邀请新用户注册赠送积分活动 634108