已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Optimal reconciliation of hierarchical wind energy forecasts utilizing temporal correlation

等级制度 计量经济学 协方差 系列(地层学) 协方差矩阵 计算机科学 可识别性 风力发电 统计 数学 数据挖掘 经济 工程类 电气工程 生物 古生物学 市场经济
作者
Navneet Sharma,Rohit Bhakar,Prerna Jain
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:301: 118053-118053 被引量:8
标识
DOI:10.1016/j.enconman.2023.118053
摘要

Independent wind energy forecasts of a wind farm at different time horizons have limited accuracy, and they show disagreement despite relating to the same wind farm. The limited forecast accuracy is attributable to the insufficient information at a particular time horizon of the wind energy time series, whereas applying distinct forecasting methods to several time series of non-identical patterns at different time scales causes disagreement among forecasts. Mutual disagreement among less accurate forecasts negatively impacts the decision-making capabilities in associated power systems activities at distinct time scales. The configuration of time series expressing different time horizons at different levels of a non-overlapped hierarchically aggregated framework manifests a temporal hierarchy. Forecast combination through reconciliation of time series forecasts drawn at different hierarchical levels of temporal hierarchy using any state-of-the-art method facilitates the sharing of diverse information across the hierarchy; consequently, accuracy and mutual agreement of forecasts improve. Such benefits may be further enhanced by embedding intra- and inter-level forecast error correlations in the forecast reconciliation process. However, the forecast error covariance matrix of temporal hierarchy becomes a complex high-dimensional structure while accommodating intra- and inter-level correlations. Estimating such a matrix is challenging since the high-dimensional structure severely impedes the identifiability of model parameters. Besides, in the hierarchical forecast reconciliation process, the number of predictor variables is generally higher than the number of samples. This condition gives rise to a singular covariance matrix, making it non-invertible, and thus obstructs its parameter estimation. This work employs the MinT(shrinkage) covariance matrix estimator that considers all correlations and shrinks the non-diagonal components of the matrix toward zero to avert the complexity and, therefore, the non-identifiability. Additionally, the shrinkage parameter λ of MinT(shrinkage) conveniently obtains the invertible matrix. The case study validates that while incorporating the intra- and inter-level forecast error correlations, MinT(shrinkage) provides competitively accurate and mutually agreed forecasts over other reconciliation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hancahngxiao发布了新的文献求助10
1秒前
大帅比完成签到 ,获得积分10
2秒前
华仔应助ling采纳,获得10
2秒前
lcw发布了新的文献求助10
2秒前
2秒前
Cynthia完成签到 ,获得积分0
4秒前
Augustines发布了新的文献求助10
4秒前
甜甜纸飞机完成签到 ,获得积分10
6秒前
YU完成签到 ,获得积分10
6秒前
9秒前
wanci应助MissZhang采纳,获得10
10秒前
烟花应助不信人间有白头采纳,获得10
11秒前
余额不足完成签到,获得积分10
11秒前
甜甜的紫菜完成签到 ,获得积分10
13秒前
sevenE发布了新的文献求助10
13秒前
迷路冰颜完成签到 ,获得积分10
13秒前
ll发布了新的文献求助10
13秒前
栗昊完成签到,获得积分10
14秒前
久久丫完成签到 ,获得积分10
14秒前
坚定盈发布了新的文献求助10
14秒前
ling完成签到,获得积分10
15秒前
18秒前
qin123完成签到 ,获得积分10
19秒前
19秒前
浮游应助孟喵喵喵采纳,获得10
19秒前
19秒前
aikka完成签到,获得积分10
20秒前
热心的豌豆完成签到 ,获得积分10
21秒前
24秒前
午盏发布了新的文献求助10
24秒前
小蘑菇应助aikka采纳,获得30
24秒前
温柔冰岚完成签到 ,获得积分10
25秒前
倩倩完成签到 ,获得积分10
25秒前
26秒前
26秒前
蟑螂恶霸完成签到,获得积分20
26秒前
26秒前
27秒前
Hello应助ceeray23采纳,获得20
28秒前
Apple发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590231
求助须知:如何正确求助?哪些是违规求助? 4674624
关于积分的说明 14794913
捐赠科研通 4630761
什么是DOI,文献DOI怎么找? 2532630
邀请新用户注册赠送积分活动 1501218
关于科研通互助平台的介绍 1468576