The Effective Fragment Molecular Orbital Method: Achieving High Scalability and Accuracy for Large Systems

可扩展性 计算机科学 瓶颈 极化率 片段(逻辑) 碎片分子轨道 从头算 分子轨道 化学 拓扑(电路) 计算科学 算法 物理 量子力学 分子 数学 数据库 组合数学 嵌入式系统
作者
Tosaporn Sattasathuchana,Peng Xu,Colleen Bertoni,Yu Lim Kim,Sarom S. Leang,Buu Q. Pham,Mark S. Gordon
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:20 (6): 2445-2461 被引量:2
标识
DOI:10.1021/acs.jctc.3c01309
摘要

The effective fragment molecular orbital (EFMO) method has been developed to predict the total energy of a very large molecular system accurately (with respect to the underlying quantum mechanical method) and efficiently by taking advantage of the locality of strong chemical interactions and employing a two-level hierarchical parallelism. The accuracy of the EFMO method is partly attributed to the accurate and robust intermolecular interaction prediction between distant fragments, in particular, the many-body polarization and dispersion effects, which require the generation of static and dynamic polarizability tensors by solving the coupled perturbed Hartree–Fock (CPHF) and time-dependent HF (TDHF) equations, respectively. Solving the CPHF and TDHF equations is the main EFMO computational bottleneck due to the inefficient (serial) and I/O-intensive implementation of the CPHF and TDHF solvers. In this work, the efficiency and scalability of the EFMO method are significantly improved with a new CPU memory-based implementation for solving the CPHF and TDHF equations that are parallelized by either message passing interface (MPI) or hybrid MPI/OpenMP. The accuracy of the EFMO method is demonstrated for both covalently bonded systems and noncovalently bound molecular clusters by systematically examining the effects of basis sets and a key distance-related cutoff parameter, Rcut. Rcut determines whether a fragment pair (dimer) is treated by the chosen ab initio method or calculated using the effective fragment potential (EFP) method (separated dimers). Decreasing the value of Rcut increases the number of separated (EFP) dimers, thereby decreasing the computational effort. It is demonstrated that excellent accuracy (<1 kcal/mol error per fragment) can be achieved when using a sufficiently large basis set with diffuse functions coupled with a small Rcut value. With the new parallel implementation, the total EFMO wall time is substantially reduced, especially with a high number of MPI ranks. Given a sufficient workload, nearly ideal strong scaling is achieved for the CPHF and TDHF parts of the calculation. For the first time, EFMO calculations with the inclusion of long-range polarization and dispersion interactions on a hydrated mesoporous silica nanoparticle with explicit water solvent molecules (more than 15k atoms) are achieved on a massively parallel supercomputer using nearly 1000 physical nodes. In addition, EFMO calculations on the carbinolamine formation step of an amine-catalyzed aldol reaction at the nanoscale with explicit solvent effects are presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
慕涔发布了新的文献求助10
刚刚
王磊完成签到,获得积分10
刚刚
梧桐的灯完成签到 ,获得积分10
刚刚
传奇3应助轩辕德地采纳,获得10
刚刚
Arnold完成签到,获得积分20
刚刚
倪妮发布了新的文献求助10
1秒前
Island完成签到,获得积分10
1秒前
LiZheng完成签到,获得积分10
1秒前
深情安青应助致橡树采纳,获得10
2秒前
Leeon完成签到,获得积分10
2秒前
李来仪完成签到,获得积分10
2秒前
打打应助unicornmed采纳,获得10
2秒前
Eddy发布了新的文献求助10
3秒前
体贴远山完成签到,获得积分10
4秒前
顾矜应助贤惠的正豪采纳,获得10
4秒前
4秒前
5秒前
无限的隶发布了新的文献求助10
5秒前
南木_完成签到,获得积分10
6秒前
笙歌自若完成签到,获得积分10
6秒前
6秒前
Akim应助江梦松采纳,获得10
6秒前
科研小民工应助认真的一刀采纳,获得200
7秒前
7秒前
猫樊完成签到,获得积分10
7秒前
hf完成签到,获得积分20
7秒前
灵明完成签到,获得积分10
7秒前
慕涔完成签到,获得积分10
8秒前
kingwill应助沐风采纳,获得30
8秒前
8秒前
陈龙完成签到,获得积分10
8秒前
9秒前
Ava应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762