Hybrid approaches to optimization and machine learning methods: a systematic literature review

计算机科学 人工智能 机器学习
作者
Beatriz Flamia Azevedo,Ana Maria A. C. Rocha,Ana I. Pereira
出处
期刊:Machine Learning [Springer Nature]
卷期号:113 (7): 4055-4097 被引量:15
标识
DOI:10.1007/s10994-023-06467-x
摘要

Abstract Notably, real problems are increasingly complex and require sophisticated models and algorithms capable of quickly dealing with large data sets and finding optimal solutions. However, there is no perfect method or algorithm; all of them have some limitations that can be mitigated or eliminated by combining the skills of different methodologies. In this way, it is expected to develop hybrid algorithms that can take advantage of the potential and particularities of each method (optimization and machine learning) to integrate methodologies and make them more efficient. This paper presents an extensive systematic and bibliometric literature review on hybrid methods involving optimization and machine learning techniques for clustering and classification. It aims to identify the potential of methods and algorithms to overcome the difficulties of one or both methodologies when combined. After the description of optimization and machine learning methods, a numerical overview of the works published since 1970 is presented. Moreover, an in-depth state-of-art review over the last three years is presented. Furthermore, a SWOT analysis of the ten most cited algorithms of the collected database is performed, investigating the strengths and weaknesses of the pure algorithms and detaching the opportunities and threats that have been explored with hybrid methods. Thus, with this investigation, it was possible to highlight the most notable works and discoveries involving hybrid methods in terms of clustering and classification and also point out the difficulties of the pure methods and algorithms that can be strengthened through the inspirations of other methodologies; they are hybrid methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
3秒前
4秒前
华仔应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
ww完成签到 ,获得积分10
5秒前
高高访文完成签到,获得积分10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
zyj发布了新的文献求助10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
李健应助科研通管家采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
薰硝壤应助科研通管家采纳,获得30
7秒前
yufanhui应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
敉_发布了新的文献求助10
7秒前
7秒前
不胜寒完成签到,获得积分10
8秒前
啊哒吸哇完成签到,获得积分10
9秒前
今后应助西伯利亚狼采纳,获得10
11秒前
11完成签到 ,获得积分10
12秒前
tutu发布了新的文献求助10
12秒前
12秒前
fr0zen完成签到,获得积分10
12秒前
12秒前
贪玩海之发布了新的文献求助10
13秒前
Jolene66发布了新的文献求助10
14秒前
烟花应助cnd采纳,获得10
15秒前
15秒前
随波逐流应助子车半邪采纳,获得30
15秒前
打打应助陶醉觅夏采纳,获得30
15秒前
小猪少年呆呆完成签到 ,获得积分10
16秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3055219
求助须知:如何正确求助?哪些是违规求助? 2711930
关于积分的说明 7429296
捐赠科研通 2356744
什么是DOI,文献DOI怎么找? 1248265
科研通“疑难数据库(出版商)”最低求助积分说明 606677
版权声明 596083