亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hybrid approaches to optimization and machine learning methods: a systematic literature review

计算机科学 人工智能 机器学习
作者
Beatriz Flamia Azevedo,Ana Maria A. C. Rocha,Ana I. Pereira
出处
期刊:Machine Learning [Springer Nature]
卷期号:113 (7): 4055-4097 被引量:39
标识
DOI:10.1007/s10994-023-06467-x
摘要

Abstract Notably, real problems are increasingly complex and require sophisticated models and algorithms capable of quickly dealing with large data sets and finding optimal solutions. However, there is no perfect method or algorithm; all of them have some limitations that can be mitigated or eliminated by combining the skills of different methodologies. In this way, it is expected to develop hybrid algorithms that can take advantage of the potential and particularities of each method (optimization and machine learning) to integrate methodologies and make them more efficient. This paper presents an extensive systematic and bibliometric literature review on hybrid methods involving optimization and machine learning techniques for clustering and classification. It aims to identify the potential of methods and algorithms to overcome the difficulties of one or both methodologies when combined. After the description of optimization and machine learning methods, a numerical overview of the works published since 1970 is presented. Moreover, an in-depth state-of-art review over the last three years is presented. Furthermore, a SWOT analysis of the ten most cited algorithms of the collected database is performed, investigating the strengths and weaknesses of the pure algorithms and detaching the opportunities and threats that have been explored with hybrid methods. Thus, with this investigation, it was possible to highlight the most notable works and discoveries involving hybrid methods in terms of clustering and classification and also point out the difficulties of the pure methods and algorithms that can be strengthened through the inspirations of other methodologies; they are hybrid methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助guoyu采纳,获得10
刚刚
25秒前
Garyzhou发布了新的文献求助20
30秒前
Garyzhou完成签到,获得积分10
41秒前
东郭源智完成签到,获得积分20
43秒前
dddd发布了新的文献求助10
46秒前
46秒前
酷波er应助叽里呱啦采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
搜集达人应助清风采纳,获得10
1分钟前
andrele发布了新的文献求助10
1分钟前
叽里呱啦发布了新的文献求助10
1分钟前
fox123完成签到,获得积分10
1分钟前
1分钟前
guoyu发布了新的文献求助10
1分钟前
1分钟前
Orange应助科研通管家采纳,获得10
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
2分钟前
华仔应助小章子冰箱采纳,获得10
2分钟前
雨停—发布了新的文献求助10
2分钟前
2分钟前
完美世界应助雨停—采纳,获得30
2分钟前
2分钟前
2分钟前
2分钟前
andrele发布了新的文献求助10
3分钟前
旧城以西发布了新的文献求助10
3分钟前
3分钟前
Zhang发布了新的文献求助20
3分钟前
lbw完成签到 ,获得积分10
3分钟前
wpj发布了新的文献求助10
3分钟前
3分钟前
oscar完成签到,获得积分10
3分钟前
ddrose发布了新的文献求助10
3分钟前
wbs13521完成签到,获得积分10
3分钟前
杳鸢应助ddrose采纳,获得30
3分钟前
科研通AI2S应助ddrose采纳,获得10
3分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3413375
求助须知:如何正确求助?哪些是违规求助? 3015678
关于积分的说明 8871627
捐赠科研通 2703387
什么是DOI,文献DOI怎么找? 1482240
科研通“疑难数据库(出版商)”最低求助积分说明 685170
邀请新用户注册赠送积分活动 679951