IL-YOLO: An Efficient Detection Algorithm for Insulator Defects in Complex Backgrounds of Transmission Lines

绝缘体(电) 计算机科学 电力传输 算法 人工智能 工程类 电气工程
作者
Qiang Zhang,Jianing Zhang,Ying Wai Li,Changfei Zhu,Guifang Wang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 14532-14546 被引量:10
标识
DOI:10.1109/access.2024.3358205
摘要

Insulators play a pivotal role in power transmission lines, and the timely detection of defects in insulators is crucial to prevent potentially catastrophic consequences in terms of human lives and property. This paper proposes an insulator defect detection algorithm, named Insulator Lack-You Only Look Once (IL-YOLO), addressing the limitations observed in existing research concerning the complex background and multi-target challenges in insulator detection. The IL-YOLO algorithm focuses on detecting insulator defects within the intricate background of power transmission lines. To enhance its functionality, we propose three improved modules. Firstly, the Insulator Lack-Global Attention Mechanism (IL-GAM) addresses issues such as the mutual influence of weights and loss of detailed information in the original module. Secondly, the Insulator Lack-C3 (IL-C3) module is designed to emphasize key information while preserving feature extraction and fusion. Lastly, the Insulator Lack-SPPFCSPC (IL-SPPFCSPC) module enhances attention to both key and global information while extracting effective information from multi-scale features. Experimental results demonstrate that IL-YOLO achieves a detection accuracy of 91.2%, marking a 3.6% improvement compared to the YOLOv5 algorithm. Furthermore, precision improves by 0.5%, recall increases by 6.3%, and the F1 score sees a boost of 3.8%. Notably, IL-YOLO achieves a frame rate of 90 frames per second (FPS), showcasing its capacity for real-time detection. Additional experiments affirm IL-YOLO's accuracy in completing insulator defect detection tasks in both general and complex backgrounds, highlighting its substantial advantages in addressing complex background and multi-target challenges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
松松关注了科研通微信公众号
1秒前
1秒前
大胆的以冬完成签到,获得积分10
1秒前
大方的觅海完成签到,获得积分10
2秒前
只如初发布了新的文献求助10
2秒前
SYLH应助斯文火龙果采纳,获得10
2秒前
易安发布了新的文献求助10
2秒前
木桶人plus完成签到 ,获得积分10
2秒前
shino发布了新的文献求助10
3秒前
3秒前
学术z完成签到,获得积分10
4秒前
晓军完成签到,获得积分10
4秒前
研友_rLmNXn完成签到,获得积分10
4秒前
开朗的睫毛膏完成签到,获得积分10
4秒前
4秒前
5秒前
语黛完成签到,获得积分10
5秒前
完美世界应助enen采纳,获得10
5秒前
6秒前
Jean发布了新的文献求助10
6秒前
小羊发布了新的文献求助30
6秒前
6秒前
木质素爱好者完成签到,获得积分10
7秒前
Notdodead应助甜甜的高跟鞋采纳,获得20
7秒前
8秒前
Giroro_roro发布了新的文献求助10
9秒前
9秒前
WQQ完成签到,获得积分10
9秒前
可爱海雪发布了新的文献求助30
9秒前
AL完成签到,获得积分10
10秒前
10秒前
负责水风完成签到,获得积分10
10秒前
jl完成签到 ,获得积分10
10秒前
11秒前
13秒前
tree发布了新的文献求助30
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650