Spatio-temporal pattern evolution of carbon emissions at the city-county-town scale in Fujian Province based on DMSP/OLS and NPP/VIIRS nighttime light data

温室气体 环境科学 碳纤维 比例(比率) 气象学 地理 自然地理学 地图学 地质学 海洋学 材料科学 复合数 复合材料
作者
Yuanmao Zheng,Menglin Fan,Yaling Cai,Mingzhe Fu,Kexin Yang,Chenyan Wei
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:442: 140958-140958 被引量:6
标识
DOI:10.1016/j.jclepro.2024.140958
摘要

Timely and accurate spatio-temporal carbon emission evolutions at different scales is essential to formulate strategies to reduce region-specific carbon emissions. However, current research on carbon emissions predominantly focuses on national and provincial levels, with few investigations at the city, county, and town levels. This study addresses this gap by examining the Fujian Province as a case study. This study combined DMSP/OLS and NPP/VIIRS nighttime light data to generate a long-term dataset. Based on this extended nighttime light data time series and statistical energy carbon emissions, we constructed a carbon emission estimation model. Carbon emissions were estimated at the city, county, and town scales in Fujian Province between 2000 and 2020. Presenting the research findings below: (i) The optimal R2 for the fusion of the two nighttime light datasets was 0.8878, and the carbon emission estimation model achieved an R2 of 0.6925. (ii) Fujian Province carbon emissions increased from 47.67 million tons in 2000 to 69.15 million tons in 2020. (iii) Fuzhou and seven coastal counties experienced rapid carbon emission increases, with an additional 13, 33, and 32 counties exhibiting fast, moderate, and slow growth, respectively. (iv) County-town scale carbon emissions exhibited spatial clustering; however, the local correlation decreased at the county level. (v) High-carbon regions were concentrated in coastal areas and large cities, with the city size demonstrating a nonlinear impact on carbon emissions. Our findings reveal the spatio-temporal patterns and regional heterogeneity of carbon emissions in the Fujian Province, offering valuable data to formulate region-specific carbon reduction policies and promote low-carbon economies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
4秒前
追寻飞风发布了新的文献求助10
7秒前
9秒前
缓存完成签到 ,获得积分10
10秒前
枫七完成签到,获得积分10
13秒前
前程似锦发布了新的文献求助10
16秒前
滾滾完成签到,获得积分10
17秒前
风犬少年完成签到,获得积分10
17秒前
拾柒关注了科研通微信公众号
19秒前
多多少少忖测的情完成签到,获得积分10
21秒前
追寻飞风完成签到,获得积分10
21秒前
24秒前
24秒前
zhuzhuxia完成签到,获得积分10
26秒前
南桑发布了新的文献求助10
27秒前
田様应助大开口采纳,获得10
27秒前
Neew完成签到 ,获得积分10
27秒前
一与余完成签到,获得积分10
28秒前
30秒前
毛豆应助科研通管家采纳,获得10
33秒前
小二郎应助南桑采纳,获得10
33秒前
酷波er应助科研通管家采纳,获得10
33秒前
充电宝应助科研通管家采纳,获得10
33秒前
33秒前
Lucas应助科研通管家采纳,获得10
33秒前
酷波er应助科研通管家采纳,获得10
33秒前
星辰大海应助科研通管家采纳,获得10
33秒前
传奇3应助科研通管家采纳,获得10
33秒前
HY完成签到,获得积分10
34秒前
40秒前
要减肥香水完成签到,获得积分10
42秒前
手机完成签到,获得积分0
43秒前
UNIQUE完成签到,获得积分10
45秒前
丰知然应助Airlie采纳,获得10
45秒前
songsong丿发布了新的文献求助10
45秒前
千里共婵娟应助王博士采纳,获得10
49秒前
杳鸢应助安安安采纳,获得10
50秒前
田様应助幸福的冰珍采纳,获得10
51秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3292248
求助须知:如何正确求助?哪些是违规求助? 2928600
关于积分的说明 8437788
捐赠科研通 2600642
什么是DOI,文献DOI怎么找? 1419174
科研通“疑难数据库(出版商)”最低求助积分说明 660247
邀请新用户注册赠送积分活动 642906