Redundancy Is Not What You Need: An Embedding Fusion Graph Auto-Encoder for Self-Supervised Graph Representation Learning

计算机科学 人工智能 图形 自编码 过度拟合 卷积神经网络 特征学习 机器学习 嵌入 模式识别(心理学) 编码器 冗余(工程) 深度学习 理论计算机科学 人工神经网络 操作系统
作者
Mengran Li,Yong Zhang,Shaofan Wang,Yongli Hu,Baocai Yin
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:1
标识
DOI:10.1109/tnnls.2024.3357080
摘要

Attribute graphs are a crucial data structure for graph communities. However, the presence of redundancy and noise in the attribute graph can impair the aggregation effect of integrating two different heterogeneous distributions of attribute and structural features, resulting in inconsistent and distorted data that ultimately compromises the accuracy and reliability of attribute graph learning. For instance, redundant or irrelevant attributes can result in overfitting, while noisy attributes can lead to underfitting. Similarly, redundant or noisy structural features can affect the accuracy of graph representations, making it challenging to distinguish between different nodes or communities. To address these issues, we propose the embedded fusion graph auto-encoder framework for self-supervised learning (SSL), which leverages multitask learning to fuse node features across different tasks to reduce redundancy. The embedding fusion graph auto-encoder (EFGAE) framework comprises two phases: pretraining (PT) and downstream task learning (DTL). During the PT phase, EFGAE uses a graph auto-encoder (GAE) based on adversarial contrastive learning to learn structural and attribute embeddings separately and then fuses these embeddings to obtain a representation of the entire graph. During the DTL phase, we introduce an adaptive graph convolutional network (AGCN), which is applied to graph neural network (GNN) classifiers to enhance recognition for downstream tasks. The experimental results demonstrate that our approach outperforms state-of-the-art (SOTA) techniques in terms of accuracy, generalization ability, and robustness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
阔达谷槐完成签到,获得积分20
2秒前
3秒前
抓到你啦发布了新的文献求助10
4秒前
000完成签到 ,获得积分10
4秒前
ohh完成签到,获得积分10
5秒前
糊涂的雁易应助xj采纳,获得10
5秒前
情怀应助xj采纳,获得10
5秒前
6秒前
wwl发布了新的文献求助10
6秒前
xbz完成签到,获得积分20
6秒前
6秒前
平安喜乐应助CY采纳,获得10
6秒前
向天发布了新的文献求助10
6秒前
6秒前
library2025发布了新的文献求助10
6秒前
hufan发布了新的文献求助20
8秒前
9秒前
飞星发布了新的文献求助10
9秒前
wstki完成签到,获得积分20
10秒前
luli发布了新的文献求助10
11秒前
NexusExplorer应助阔达谷槐采纳,获得10
12秒前
温暖寻雪发布了新的文献求助10
13秒前
13秒前
rookie发布了新的文献求助10
13秒前
黑眼圈完成签到,获得积分10
14秒前
14秒前
14秒前
芒果不忙完成签到,获得积分10
14秒前
温暖寻绿完成签到,获得积分10
14秒前
田様应助飞星采纳,获得10
14秒前
15秒前
15秒前
16秒前
16秒前
wang11发布了新的文献求助10
17秒前
Siri完成签到,获得积分20
17秒前
nightmare发布了新的文献求助10
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312665
求助须知:如何正确求助?哪些是违规求助? 2945170
关于积分的说明 8523372
捐赠科研通 2620973
什么是DOI,文献DOI怎么找? 1433198
科研通“疑难数据库(出版商)”最低求助积分说明 664918
邀请新用户注册赠送积分活动 650255