计算机科学
人工智能
图形
自编码
过度拟合
卷积神经网络
特征学习
机器学习
嵌入
模式识别(心理学)
编码器
冗余(工程)
深度学习
理论计算机科学
人工神经网络
操作系统
作者
Mengran Li,Yong Zhang,Shaofan Wang,Yongli Hu,Baocai Yin
出处
期刊:IEEE transactions on neural networks and learning systems
[Institute of Electrical and Electronics Engineers]
日期:2024-01-01
卷期号:: 1-15
被引量:1
标识
DOI:10.1109/tnnls.2024.3357080
摘要
Attribute graphs are a crucial data structure for graph communities. However, the presence of redundancy and noise in the attribute graph can impair the aggregation effect of integrating two different heterogeneous distributions of attribute and structural features, resulting in inconsistent and distorted data that ultimately compromises the accuracy and reliability of attribute graph learning. For instance, redundant or irrelevant attributes can result in overfitting, while noisy attributes can lead to underfitting. Similarly, redundant or noisy structural features can affect the accuracy of graph representations, making it challenging to distinguish between different nodes or communities. To address these issues, we propose the embedded fusion graph auto-encoder framework for self-supervised learning (SSL), which leverages multitask learning to fuse node features across different tasks to reduce redundancy. The embedding fusion graph auto-encoder (EFGAE) framework comprises two phases: pretraining (PT) and downstream task learning (DTL). During the PT phase, EFGAE uses a graph auto-encoder (GAE) based on adversarial contrastive learning to learn structural and attribute embeddings separately and then fuses these embeddings to obtain a representation of the entire graph. During the DTL phase, we introduce an adaptive graph convolutional network (AGCN), which is applied to graph neural network (GNN) classifiers to enhance recognition for downstream tasks. The experimental results demonstrate that our approach outperforms state-of-the-art (SOTA) techniques in terms of accuracy, generalization ability, and robustness.
科研通智能强力驱动
Strongly Powered by AbleSci AI