Redundancy Is Not What You Need: An Embedding Fusion Graph Auto-Encoder for Self-Supervised Graph Representation Learning

计算机科学 人工智能 图形 自编码 过度拟合 卷积神经网络 特征学习 机器学习 嵌入 模式识别(心理学) 编码器 冗余(工程) 深度学习 理论计算机科学 人工神经网络 操作系统
作者
Mengran Li,Yong Zhang,Shaofan Wang,Yongli Hu,Baocai Yin
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (2): 3519-3533 被引量:1
标识
DOI:10.1109/tnnls.2024.3357080
摘要

Attribute graphs are a crucial data structure for graph communities. However, the presence of redundancy and noise in the attribute graph can impair the aggregation effect of integrating two different heterogeneous distributions of attribute and structural features, resulting in inconsistent and distorted data that ultimately compromises the accuracy and reliability of attribute graph learning. For instance, redundant or irrelevant attributes can result in overfitting, while noisy attributes can lead to underfitting. Similarly, redundant or noisy structural features can affect the accuracy of graph representations, making it challenging to distinguish between different nodes or communities. To address these issues, we propose the embedded fusion graph auto-encoder framework for self-supervised learning (SSL), which leverages multitask learning to fuse node features across different tasks to reduce redundancy. The embedding fusion graph auto-encoder (EFGAE) framework comprises two phases: pretraining (PT) and downstream task learning (DTL). During the PT phase, EFGAE uses a graph auto-encoder (GAE) based on adversarial contrastive learning to learn structural and attribute embeddings separately and then fuses these embeddings to obtain a representation of the entire graph. During the DTL phase, we introduce an adaptive graph convolutional network (AGCN), which is applied to graph neural network (GNN) classifiers to enhance recognition for downstream tasks. The experimental results demonstrate that our approach outperforms state-of-the-art (SOTA) techniques in terms of accuracy, generalization ability, and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
apple发布了新的文献求助10
刚刚
CarterXD完成签到,获得积分10
刚刚
紧张的友灵完成签到,获得积分10
刚刚
SciGPT应助之仔饼采纳,获得10
1秒前
liudiqiu应助追寻的易烟采纳,获得10
1秒前
Chem is try发布了新的文献求助10
1秒前
1秒前
vsoar完成签到,获得积分10
1秒前
2秒前
3秒前
GGGGGGGGGG发布了新的文献求助10
3秒前
3秒前
打打应助hhh采纳,获得10
4秒前
抓恐龙关注了科研通微信公众号
4秒前
碳点godfather完成签到,获得积分10
4秒前
ren完成签到,获得积分20
4秒前
我想把这玩意儿染成绿的完成签到 ,获得积分10
5秒前
TG_FY完成签到,获得积分10
5秒前
5秒前
hhh完成签到,获得积分10
5秒前
JamesPei应助诗轩采纳,获得10
6秒前
TT完成签到,获得积分10
7秒前
reck发布了新的文献求助10
7秒前
8秒前
DK发布了新的文献求助10
8秒前
英俊的铭应助ren采纳,获得10
8秒前
圈圈发布了新的文献求助10
8秒前
乐乱完成签到 ,获得积分10
9秒前
415484112完成签到,获得积分10
10秒前
yinyi发布了新的文献求助10
10秒前
10秒前
赵一丁完成签到,获得积分10
11秒前
成就绮琴完成签到 ,获得积分10
11秒前
Chen完成签到,获得积分10
11秒前
huanfid完成签到 ,获得积分10
11秒前
11秒前
11秒前
12秒前
Stitch完成签到 ,获得积分10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672