Redundancy Is Not What You Need: An Embedding Fusion Graph Auto-Encoder for Self-Supervised Graph Representation Learning

计算机科学 人工智能 图形 自编码 过度拟合 卷积神经网络 特征学习 机器学习 嵌入 模式识别(心理学) 编码器 冗余(工程) 深度学习 理论计算机科学 人工神经网络 操作系统
作者
Mengran Li,Yong Zhang,Shaofan Wang,Yongli Hu,Baocai Yin
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (2): 3519-3533 被引量:1
标识
DOI:10.1109/tnnls.2024.3357080
摘要

Attribute graphs are a crucial data structure for graph communities. However, the presence of redundancy and noise in the attribute graph can impair the aggregation effect of integrating two different heterogeneous distributions of attribute and structural features, resulting in inconsistent and distorted data that ultimately compromises the accuracy and reliability of attribute graph learning. For instance, redundant or irrelevant attributes can result in overfitting, while noisy attributes can lead to underfitting. Similarly, redundant or noisy structural features can affect the accuracy of graph representations, making it challenging to distinguish between different nodes or communities. To address these issues, we propose the embedded fusion graph auto-encoder framework for self-supervised learning (SSL), which leverages multitask learning to fuse node features across different tasks to reduce redundancy. The embedding fusion graph auto-encoder (EFGAE) framework comprises two phases: pretraining (PT) and downstream task learning (DTL). During the PT phase, EFGAE uses a graph auto-encoder (GAE) based on adversarial contrastive learning to learn structural and attribute embeddings separately and then fuses these embeddings to obtain a representation of the entire graph. During the DTL phase, we introduce an adaptive graph convolutional network (AGCN), which is applied to graph neural network (GNN) classifiers to enhance recognition for downstream tasks. The experimental results demonstrate that our approach outperforms state-of-the-art (SOTA) techniques in terms of accuracy, generalization ability, and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
PEAR发布了新的文献求助10
刚刚
刚刚
1秒前
赘婿应助跳跃傲安采纳,获得10
2秒前
2秒前
菜菜带带发布了新的文献求助10
3秒前
内向怀曼发布了新的文献求助10
4秒前
6秒前
wanghuifen123完成签到,获得积分20
6秒前
丘比特应助fzzf采纳,获得10
7秒前
赘婿应助CA采纳,获得10
8秒前
erhao发布了新的文献求助10
8秒前
星辰大海应助una采纳,获得10
9秒前
英姑应助古月采纳,获得10
10秒前
柳柳应助ouiiiblue采纳,获得10
11秒前
小呱完成签到 ,获得积分10
11秒前
烂漫的断秋完成签到 ,获得积分10
11秒前
dadadaxia完成签到,获得积分10
13秒前
13秒前
韶华发布了新的文献求助10
14秒前
挤牙膏砖砖家完成签到,获得积分10
14秒前
hao发布了新的文献求助10
15秒前
16秒前
16秒前
小马甲应助刘欣采纳,获得10
16秒前
17秒前
18秒前
Simonn29发布了新的文献求助200
18秒前
搞怪莫茗应助栗园采纳,获得10
20秒前
乐乐应助滚筒洗衣机采纳,获得10
20秒前
SciGPT应助不是小苦瓜采纳,获得10
20秒前
跳跃傲安发布了新的文献求助10
21秒前
wu8577应助伶俐的悒采纳,获得10
21秒前
wu8577应助伶俐的悒采纳,获得10
21秒前
科研通AI2S应助雨衣采纳,获得10
25秒前
Eleven完成签到,获得积分10
25秒前
26秒前
27秒前
28秒前
SciGPT应助Druid采纳,获得10
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956119
求助须知:如何正确求助?哪些是违规求助? 3502336
关于积分的说明 11107217
捐赠科研通 3232912
什么是DOI,文献DOI怎么找? 1787081
邀请新用户注册赠送积分活动 870422
科研通“疑难数据库(出版商)”最低求助积分说明 802019