已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Barcode-Array Biochip Sensor Analysis System Based on Geometry-Guide Learning

生物芯片 条形码 扫描仪 分割 计算机科学 计算机硬件 人工智能 嵌入式系统 生物 生物信息学 操作系统
作者
Jintu Zheng,Yongting Zhang,Xiaojuan Zhou,Chunhua Wang,Jun Wei,Ying Hu,Zenan Wang
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (7): 9353-9365
标识
DOI:10.1109/jsen.2024.3366968
摘要

In recent years, the biochip sensor has gained significant attention for its extensive utilization in drug screening, biochemical pathway profiling, and genetic sequencing. The barcode-array biochips have emerged as a promising biochip sensor technology due to their high throughput and rapid detection capabilities. However, to achieve optimal analysis results, it is crucial to effectively integrate each step of the biochip sensor analysis. Unfortunately, commercial scanner systems suffer from manual redundancy processing and low accuracy issues. To that end, this article presents an automatic barcode-array biochip sensor analysis system that enhances efficiency and accuracy. The proposed system introduces a novel barcode-array biochip sensor design that facilitates data analysis. Additionally, a confocal laser scanner with a lightweight scanning strategy is employed to improve scanning efficiency. Furthermore, a geometry-guide learning (GGL) method ensures accurate barcode segmentation, which improves the cooperation between barcode-array biochip sensor analysis and biochip fabrication. The GGL approach incorporates prior region prompts and specific scanning strategies, resulting in an F1-score of 86.17 for barcode segmentation, overcoming the limitations faced by existing segmentation algorithms when confronted with extreme challenges. Moreover, the lightweight scanning strategy improves data acquisition efficiency by 53.2% while saving 67.5% disk space usage. The linear regression ${R^{{2}}}$ value of fluorescence emission intensity exceeds 0.99, indicating that the proposed system is suitable for both research purposes and clinical diagnostics applications. Notably, this article represents the first integrated solution for barcode-array biochip sensors that effectively addresses the challenges encountered at each step.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
古铜完成签到 ,获得积分10
2秒前
美好的鸽子完成签到,获得积分10
3秒前
Guoqiang发布了新的文献求助10
3秒前
4秒前
yudandan@CJLU发布了新的文献求助10
5秒前
sunny应助火山采纳,获得10
7秒前
8秒前
易楠完成签到,获得积分20
17秒前
LLQ完成签到,获得积分10
17秒前
19秒前
笙璃完成签到 ,获得积分10
21秒前
23秒前
cherrychou发布了新的文献求助10
23秒前
LLQ完成签到,获得积分10
25秒前
小蘑菇应助RXwang采纳,获得10
25秒前
30秒前
NexusExplorer应助hhc采纳,获得10
30秒前
30秒前
DD发布了新的文献求助10
33秒前
科目三应助甄埠绰采纳,获得10
34秒前
科目三应助lvsehx采纳,获得10
35秒前
风趣的梦露完成签到 ,获得积分10
36秒前
36秒前
CodeCraft应助科研通管家采纳,获得10
37秒前
烟花应助科研通管家采纳,获得10
37秒前
大个应助科研通管家采纳,获得10
37秒前
38秒前
不安的凡完成签到,获得积分10
40秒前
andrele完成签到,获得积分10
41秒前
深情映冬发布了新的文献求助10
42秒前
43秒前
不安的凡发布了新的文献求助10
44秒前
123完成签到,获得积分10
45秒前
hhhhhhh完成签到,获得积分10
47秒前
snah完成签到 ,获得积分10
48秒前
深情映冬完成签到,获得积分20
48秒前
lvsehx发布了新的文献求助10
48秒前
香蕉觅云应助ichi采纳,获得10
48秒前
二丙完成签到 ,获得积分10
50秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
肝病学名词 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171338
求助须知:如何正确求助?哪些是违规求助? 2822329
关于积分的说明 7938771
捐赠科研通 2482804
什么是DOI,文献DOI怎么找? 1322791
科研通“疑难数据库(出版商)”最低求助积分说明 633742
版权声明 602627