DFR-Net: Density Feature Refinement Network for Image Dehazing Utilizing Haze Density Difference

计算机科学 特征(语言学) 网(多面体) 人工智能 图像(数学) 薄雾 特征提取 模式识别(心理学) 计算机视觉 数学 几何学 语言学 物理 哲学 气象学
作者
Zhongze Wang,Haitao Zhao,Lujian Yao,Jingchao Peng,Kaijie Zhao
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:1
标识
DOI:10.1109/tmm.2024.3369979
摘要

In image dehazing task, haze density is a key feature and affects the performance of dehazing methods.However, some of the existing methods lack a comparative image to measure densities, and others create intermediate results but lack the exploitation of their density differences, which can facilitate perception of density.To address these deficiencies, we propose a density-aware dehazing method named Density Feature Refinement Network (DFR-Net) that extracts haze density features from density differences and leverages density differences to refine density features.In DFR-Net, we first generate a proposal image that has lower overall density than the hazy input, bringing in global density differences.Additionally, the dehazing residual of the proposal image reflects the level of dehazing performance and provides local density differences that indicate localized hard dehazing or high density areas.Subsequently, we introduce a Global Branch (GB) and a Local Branch (LB) to achieve density-awareness.In GB, we use Siamese networks for feature extraction of hazy inputs and proposal images, and we propose a Global Density Feature Refinement (GDFR) module that can refine features by pushing features with different global densities further away.In LB, we explore local density features from the dehazing residuals between hazy inputs and proposal images and introduce an Intermediate Dehazing Residual Feedforward (IDRF) module to update local features and pull them closer to clear image features.Sufficient experiments demonstrate that the proposed method achieves results beyond the state-of-the-art methods on various datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老疯智发布了新的文献求助10
刚刚
sweetbearm应助通~采纳,获得10
刚刚
神凰完成签到,获得积分10
刚刚
Z小姐发布了新的文献求助10
1秒前
NexusExplorer应助白泽采纳,获得10
1秒前
2秒前
2秒前
火星上妙梦完成签到 ,获得积分10
2秒前
赘婿应助mayungui采纳,获得10
2秒前
贾不可发布了新的文献求助10
3秒前
英俊梦槐发布了新的文献求助30
3秒前
Xu完成签到,获得积分10
4秒前
4秒前
秀丽千山完成签到,获得积分10
4秒前
5秒前
6秒前
哈哈哈哈完成签到,获得积分10
6秒前
沧海泪发布了新的文献求助10
7秒前
小胡先森应助凤凰山采纳,获得10
7秒前
一一完成签到,获得积分10
7秒前
惠惠发布了新的文献求助10
7秒前
shotgod完成签到,获得积分20
8秒前
科研通AI5应助蕾子采纳,获得10
8秒前
happy杨完成签到 ,获得积分10
8秒前
lichaoyes发布了新的文献求助10
8秒前
8秒前
Owen应助通~采纳,获得10
8秒前
封闭货车发布了新的文献求助10
9秒前
9秒前
www发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
11秒前
shotgod发布了新的文献求助10
11秒前
ling玲完成签到,获得积分10
11秒前
奔奔发布了新的文献求助10
11秒前
SweepingMonk应助虚心盼晴采纳,获得10
12秒前
13秒前
汉堡包应助XXF采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794