DFR-Net: Density Feature Refinement Network for Image Dehazing Utilizing Haze Density Difference

计算机科学 特征(语言学) 网(多面体) 人工智能 图像(数学) 薄雾 特征提取 模式识别(心理学) 计算机视觉 数学 哲学 语言学 物理 几何学 气象学
作者
Zhongze Wang,Haitao Zhao,Lujian Yao,Jingchao Peng,Kaijie Zhao
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:1
标识
DOI:10.1109/tmm.2024.3369979
摘要

In image dehazing task, haze density is a key feature and affects the performance of dehazing methods.However, some of the existing methods lack a comparative image to measure densities, and others create intermediate results but lack the exploitation of their density differences, which can facilitate perception of density.To address these deficiencies, we propose a density-aware dehazing method named Density Feature Refinement Network (DFR-Net) that extracts haze density features from density differences and leverages density differences to refine density features.In DFR-Net, we first generate a proposal image that has lower overall density than the hazy input, bringing in global density differences.Additionally, the dehazing residual of the proposal image reflects the level of dehazing performance and provides local density differences that indicate localized hard dehazing or high density areas.Subsequently, we introduce a Global Branch (GB) and a Local Branch (LB) to achieve density-awareness.In GB, we use Siamese networks for feature extraction of hazy inputs and proposal images, and we propose a Global Density Feature Refinement (GDFR) module that can refine features by pushing features with different global densities further away.In LB, we explore local density features from the dehazing residuals between hazy inputs and proposal images and introduce an Intermediate Dehazing Residual Feedforward (IDRF) module to update local features and pull them closer to clear image features.Sufficient experiments demonstrate that the proposed method achieves results beyond the state-of-the-art methods on various datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wawaeryu完成签到,获得积分10
1秒前
奥拉同学发布了新的文献求助10
1秒前
赘婿应助Ysj采纳,获得10
1秒前
Xiaohu完成签到,获得积分10
1秒前
任性的海白完成签到,获得积分20
2秒前
2秒前
3秒前
Lucas应助火星上的闭月采纳,获得10
3秒前
科目三应助anyig采纳,获得10
3秒前
yucj发布了新的文献求助10
4秒前
5秒前
世隐发布了新的文献求助10
5秒前
cc应助zf采纳,获得10
5秒前
5秒前
6秒前
心灵美的觅翠完成签到 ,获得积分10
6秒前
ZZ发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
8秒前
Owen应助白宇采纳,获得10
8秒前
归途完成签到 ,获得积分10
9秒前
9秒前
华仔应助东风采纳,获得20
9秒前
9秒前
XhovyZz发布了新的文献求助10
11秒前
11秒前
11秒前
温柔宛儿完成签到,获得积分20
11秒前
嗯哼发布了新的文献求助10
12秒前
zz发布了新的文献求助30
13秒前
垃圾筐完成签到,获得积分10
13秒前
skevvecl完成签到,获得积分10
13秒前
迎风完成签到,获得积分10
13秒前
14秒前
星辰大海应助wayhome采纳,获得10
15秒前
6543210完成签到,获得积分10
15秒前
三金发布了新的文献求助10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3955056
求助须知:如何正确求助?哪些是违规求助? 3501390
关于积分的说明 11102563
捐赠科研通 3231634
什么是DOI,文献DOI怎么找? 1786494
邀请新用户注册赠送积分活动 870109
科研通“疑难数据库(出版商)”最低求助积分说明 801813