DFR-Net: Density Feature Refinement Network for Image Dehazing Utilizing Haze Density Difference

计算机科学 特征(语言学) 网(多面体) 人工智能 图像(数学) 薄雾 特征提取 模式识别(心理学) 计算机视觉 数学 几何学 语言学 物理 哲学 气象学
作者
Zhongze Wang,Haitao Zhao,Lujian Yao,Jingchao Peng,Kaijie Zhao
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:1
标识
DOI:10.1109/tmm.2024.3369979
摘要

In image dehazing task, haze density is a key feature and affects the performance of dehazing methods.However, some of the existing methods lack a comparative image to measure densities, and others create intermediate results but lack the exploitation of their density differences, which can facilitate perception of density.To address these deficiencies, we propose a density-aware dehazing method named Density Feature Refinement Network (DFR-Net) that extracts haze density features from density differences and leverages density differences to refine density features.In DFR-Net, we first generate a proposal image that has lower overall density than the hazy input, bringing in global density differences.Additionally, the dehazing residual of the proposal image reflects the level of dehazing performance and provides local density differences that indicate localized hard dehazing or high density areas.Subsequently, we introduce a Global Branch (GB) and a Local Branch (LB) to achieve density-awareness.In GB, we use Siamese networks for feature extraction of hazy inputs and proposal images, and we propose a Global Density Feature Refinement (GDFR) module that can refine features by pushing features with different global densities further away.In LB, we explore local density features from the dehazing residuals between hazy inputs and proposal images and introduce an Intermediate Dehazing Residual Feedforward (IDRF) module to update local features and pull them closer to clear image features.Sufficient experiments demonstrate that the proposed method achieves results beyond the state-of-the-art methods on various datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Leeyh完成签到,获得积分10
2秒前
2秒前
略略略发布了新的文献求助10
2秒前
3秒前
3秒前
导师老八发布了新的文献求助10
3秒前
云柔竹劲发布了新的文献求助10
5秒前
123321发布了新的文献求助10
6秒前
6秒前
wsj发布了新的文献求助30
9秒前
领导范儿应助木木采纳,获得10
10秒前
星辰大海应助神樂彩兔采纳,获得10
10秒前
天天快乐应助心海采纳,获得10
10秒前
12秒前
12秒前
13秒前
爆米花应助叶潭采纳,获得10
14秒前
量子星尘发布了新的文献求助150
14秒前
害怕的元正完成签到,获得积分20
14秒前
16秒前
芒果完成签到,获得积分10
16秒前
wq发布了新的文献求助10
16秒前
刘谦发布了新的文献求助10
16秒前
17秒前
17秒前
18秒前
在水一方应助pura卷卷采纳,获得30
18秒前
19秒前
20秒前
21秒前
桐桐应助sunshine采纳,获得10
21秒前
斯提亚拉完成签到,获得积分10
22秒前
心海发布了新的文献求助10
22秒前
鬼笔环肽应助拼搏向上采纳,获得10
22秒前
明明完成签到,获得积分20
22秒前
ding应助孙雪松采纳,获得10
23秒前
23秒前
23秒前
23秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
International Handbook of Earthquake & Engineering Seismology, Part B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5146677
求助须知:如何正确求助?哪些是违规求助? 4343554
关于积分的说明 13527098
捐赠科研通 4184701
什么是DOI,文献DOI怎么找? 2294782
邀请新用户注册赠送积分活动 1295250
关于科研通互助平台的介绍 1238341