材料科学
钝化
钙钛矿(结构)
结晶度
晶界
能量转换效率
兴奋剂
化学工程
无机化学
纳米技术
光电子学
冶金
微观结构
化学
复合材料
图层(电子)
工程类
作者
Weihai Zhang,Heng Liu,Yating Qu,Jieshun Cui,Wenjun Zhang,Tingting Shi,Hsing‐Lin Wang
标识
DOI:10.1002/adma.202309193
摘要
Abstract Pb–Sn mixed inorganic perovskite solar cells (PSCs) have garnered increasing interest as a viable solution to mitigate the thermal instability and lead toxicity of hybrid lead‐based PSCs. However, the relatively poor structural stability and low device efficiency hinder its further development. Herein, high‐performance manganese (Mn)‐doped Pb–Sn–Mn‐based inorganic perovskite solar cells (PSCs) are successfully developed by introducing Benzhydroxamic Acid (BHA) as multifunctional additive. The incorporation of smaller divalent Mn cations contributes to a contraction of the perovskite crystal, leading to an improvement in structural stability. The BHA additive containing a reductive hydroxamic acid group (O═C–NHOH) not only mitigates the notorious oxidation of Sn 2+ but also interacts with metal ions at the B‐site and passivates related defects. This results in films with high crystallinity and low defect density. Moreover, the BHA molecules tend to introduce a near‐vertical dipole moment that parallels the built‐in electric field, thus facilitating charge carrier extraction. Consequently, the resulting device delivers a champion PCE as high as 17.12%, which represents the highest reported efficiency for Pb–Sn‐based inorganic PSCs thus far. Furthermore, the BHA molecule provides an in situ encapsulation of the perovskite grain boundary, resulting in significant enhancement of device air stability.
科研通智能强力驱动
Strongly Powered by AbleSci AI