已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Anticipating the main theme: A model for understanding prospective memory and reward learning in sonata-form listening

心理学 认知心理学 积极倾听 音乐剧 预测(人工智能) 主题(计算) 记忆 动作(物理) 音乐与情感 调性 沟通 音乐教育 艺术 音乐 教育学 物理 量子力学 人工智能 计算机科学 视觉艺术 操作系统
作者
Chen‐Gia Tsai
出处
期刊:Musicae Scientiae [SAGE]
卷期号:28 (3): 436-450
标识
DOI:10.1177/10298649231217121
摘要

A number of studies have established a connection between musical anticipation and reward processing, yet the interrelated roles of the musical themes, their anticipatory cues, and the large-scale design of musical forms have not been adequately explored. To fill this gap, I present in this article a psychological model that focuses on listeners’ anticipation of musical themes while listening to familiar pieces written in sonata form. Active listening may engage prospective memory, which refers to the ability to recall an intended action in the future. While listening to a piece in sonata form, an intended action is to monitor the recapitulation of the main theme in the home key. The retransition preceding the recapitulation may prompt listeners to engage in anticipatory imagery of the imminent theme. I identify four types of musical cues present in retransitions: dissonance-related, attention-related, goal-related, and time-based. These cues can foster listeners’ attention allocation toward predicting the theme through sequence processing and subvocal humming along with the music. The confirmation of this prediction and the harmonic resolution at the beginning of the recapitulation can serve as positive reinforcers, strengthening the listening habit of anticipatory imagery of main themes. Drawing on recent brain-imaging studies, the proposed model suggests that sensitization to anticipatory musical cues and precise prediction/imagery of themes are essential for reward-based learning of music. Moreover, this model clarifies both the presence of themes in various musical forms and a critical attribute of effective musical themes, namely, their ease of memorization and imaginability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kyt完成签到,获得积分10
刚刚
刚刚
1秒前
ffx发布了新的文献求助10
1秒前
2秒前
Jasper应助Mn采纳,获得30
3秒前
keyanzhang发布了新的文献求助10
3秒前
kyt发布了新的文献求助10
3秒前
5秒前
6秒前
爱听歌蜗牛应助bodhi采纳,获得10
6秒前
7秒前
8秒前
在水一方发布了新的文献求助10
8秒前
英姑应助失眠的之桃采纳,获得10
9秒前
11秒前
12秒前
13秒前
JamesPei应助药小博采纳,获得10
17秒前
18秒前
研友_ZGRqKn完成签到,获得积分10
19秒前
在水一方完成签到,获得积分10
20秒前
卡比发布了新的文献求助30
20秒前
20秒前
顺利的耶完成签到 ,获得积分10
20秒前
1234567890完成签到 ,获得积分10
21秒前
22秒前
顺利的耶发布了新的文献求助10
24秒前
xx完成签到,获得积分10
24秒前
科研通AI5应助借一步说话采纳,获得10
25秒前
小蜜蜂完成签到,获得积分10
25秒前
敏er好学发布了新的文献求助10
26秒前
26秒前
29秒前
30秒前
可爱的函函应助郑总采纳,获得10
31秒前
药小博发布了新的文献求助10
31秒前
31秒前
ding应助chillibb采纳,获得10
32秒前
橙子完成签到 ,获得积分10
34秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538721
求助须知:如何正确求助?哪些是违规求助? 3116413
关于积分的说明 9325163
捐赠科研通 2814274
什么是DOI,文献DOI怎么找? 1546563
邀请新用户注册赠送积分活动 720607
科研通“疑难数据库(出版商)”最低求助积分说明 712086