A hyperspectral band selection algorithm for identifying high oleic acid peanuts

高光谱成像 线性判别分析 模式识别(心理学) 人工智能 支持向量机 偏最小二乘回归 数学 特征选择 光谱带 计算机科学 算法 遥感 统计 地质学
作者
Hui Shao,Xingyun Li,Long Sun,Cheng Wang,Yuxia Hu
出处
期刊:Journal of Near Infrared Spectroscopy [SAGE]
卷期号:32 (1-2): 10-17 被引量:3
标识
DOI:10.1177/09670335231225817
摘要

High oleic acid peanuts have higher oleic acid content and stronger oxidation stability than common peanuts, but their appearances are similar, which imposes difficulties for classifying. Based on this, the study aims to classify high oleic acid peanut to ensure its purity by using hyperspectral imaging technology. However, classification accuracy and efficiency are limited given the large amount of redundant information of hyperspectral images. The band iteration algorithm (BIA) is proposed to select characteristic bands by reducing the redundant information between spectral bands for the peanut classification. Hyperspectral images with 616 bands (from 400 nm to 1100 nm) of 126 high oleic acid peanuts and 126 common peanuts were collected. Then, BIA selected optimal bands as characteristic bands from adjacent bands according to the classification accuracy of each band subsets. Thirdly, three classification models, namely linear discriminant analysis, support vector machine, and partial least squares-discriminant analysis (PLS-DA), were employed to compare the performance of BIA with successive projections algorithm and competitive adaptive reweighted sampling, respectively. The experimental results show that BIA can effectively improve the classification ability of spectral data. The BIA-PLS-DA model had the best classification efficiency, and the accuracy of the test set reached 93.26%. For peanut individuals, only one peanut sample was misclassified with a classification error rate of 1.43%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
leiyuekai发布了新的文献求助10
刚刚
蝶步韶华发布了新的文献求助10
刚刚
我是完成签到 ,获得积分10
1秒前
方法发布了新的文献求助10
1秒前
dd发布了新的文献求助10
1秒前
2秒前
3秒前
爆米花应助默默采纳,获得10
3秒前
充电宝应助Peng采纳,获得10
4秒前
万能图书馆应助SC234采纳,获得10
4秒前
hongge007发布了新的文献求助10
4秒前
Luna_aaa应助盛夏如花采纳,获得10
4秒前
Owen应助喜欢猫采纳,获得10
5秒前
达尔文关注了科研通微信公众号
5秒前
5秒前
欣喜的绝山完成签到,获得积分10
5秒前
FashionBoy应助被窝哲学家采纳,获得10
5秒前
6秒前
yznfly应助Rico采纳,获得30
7秒前
WangYF2025完成签到 ,获得积分10
8秒前
8秒前
dd完成签到,获得积分20
9秒前
下次一定发布了新的文献求助10
9秒前
9秒前
小李发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
热情的远锋完成签到 ,获得积分10
13秒前
13秒前
14秒前
15秒前
Hello应助西瓜刀采纳,获得10
16秒前
达尔文发布了新的文献求助10
17秒前
YaoJason完成签到 ,获得积分10
18秒前
落后的彩虹完成签到 ,获得积分10
18秒前
19秒前
20秒前
佟韩发布了新的文献求助10
20秒前
gemini0615发布了新的文献求助10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633845
求助须知:如何正确求助?哪些是违规求助? 4729625
关于积分的说明 14986791
捐赠科研通 4791677
什么是DOI,文献DOI怎么找? 2558987
邀请新用户注册赠送积分活动 1519408
关于科研通互助平台的介绍 1479690