A hyperspectral band selection algorithm for identifying high oleic acid peanuts

高光谱成像 线性判别分析 模式识别(心理学) 人工智能 支持向量机 偏最小二乘回归 数学 特征选择 光谱带 计算机科学 算法 遥感 统计 地质学
作者
Hui Shao,Xingyun Li,Long Sun,Cheng Wang,Yuxia Hu
出处
期刊:Journal of Near Infrared Spectroscopy [SAGE]
卷期号:32 (1-2): 10-17
标识
DOI:10.1177/09670335231225817
摘要

High oleic acid peanuts have higher oleic acid content and stronger oxidation stability than common peanuts, but their appearances are similar, which imposes difficulties for classifying. Based on this, the study aims to classify high oleic acid peanut to ensure its purity by using hyperspectral imaging technology. However, classification accuracy and efficiency are limited given the large amount of redundant information of hyperspectral images. The band iteration algorithm (BIA) is proposed to select characteristic bands by reducing the redundant information between spectral bands for the peanut classification. Hyperspectral images with 616 bands (from 400 nm to 1100 nm) of 126 high oleic acid peanuts and 126 common peanuts were collected. Then, BIA selected optimal bands as characteristic bands from adjacent bands according to the classification accuracy of each band subsets. Thirdly, three classification models, namely linear discriminant analysis, support vector machine, and partial least squares-discriminant analysis (PLS-DA), were employed to compare the performance of BIA with successive projections algorithm and competitive adaptive reweighted sampling, respectively. The experimental results show that BIA can effectively improve the classification ability of spectral data. The BIA-PLS-DA model had the best classification efficiency, and the accuracy of the test set reached 93.26%. For peanut individuals, only one peanut sample was misclassified with a classification error rate of 1.43%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄婷发布了新的文献求助10
刚刚
刚刚
yuan完成签到,获得积分10
刚刚
zho发布了新的文献求助10
刚刚
刚刚
苏苏完成签到,获得积分10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得80
1秒前
Hello应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
万能图书馆应助内向秋寒采纳,获得10
1秒前
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
zzzq应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得30
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
soso应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
2秒前
orixero应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
zzzq应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
hzauhzau发布了新的文献求助10
2秒前
2秒前
秀丽千山发布了新的文献求助10
2秒前
饭小心发布了新的文献求助10
2秒前
叶梓发布了新的文献求助10
2秒前
jy发布了新的文献求助10
2秒前
3秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794