A hyperspectral band selection algorithm for identifying high oleic acid peanuts

高光谱成像 线性判别分析 模式识别(心理学) 人工智能 支持向量机 偏最小二乘回归 数学 特征选择 光谱带 计算机科学 算法 遥感 统计 地质学
作者
Hui Shao,Xingyun Li,Long Sun,Cheng Wang,Yuxia Hu
出处
期刊:Journal of Near Infrared Spectroscopy [SAGE]
卷期号:32 (1-2): 10-17 被引量:3
标识
DOI:10.1177/09670335231225817
摘要

High oleic acid peanuts have higher oleic acid content and stronger oxidation stability than common peanuts, but their appearances are similar, which imposes difficulties for classifying. Based on this, the study aims to classify high oleic acid peanut to ensure its purity by using hyperspectral imaging technology. However, classification accuracy and efficiency are limited given the large amount of redundant information of hyperspectral images. The band iteration algorithm (BIA) is proposed to select characteristic bands by reducing the redundant information between spectral bands for the peanut classification. Hyperspectral images with 616 bands (from 400 nm to 1100 nm) of 126 high oleic acid peanuts and 126 common peanuts were collected. Then, BIA selected optimal bands as characteristic bands from adjacent bands according to the classification accuracy of each band subsets. Thirdly, three classification models, namely linear discriminant analysis, support vector machine, and partial least squares-discriminant analysis (PLS-DA), were employed to compare the performance of BIA with successive projections algorithm and competitive adaptive reweighted sampling, respectively. The experimental results show that BIA can effectively improve the classification ability of spectral data. The BIA-PLS-DA model had the best classification efficiency, and the accuracy of the test set reached 93.26%. For peanut individuals, only one peanut sample was misclassified with a classification error rate of 1.43%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
谦让的小龙完成签到 ,获得积分10
1秒前
bing发布了新的文献求助10
2秒前
ei123完成签到,获得积分10
3秒前
3秒前
lzy完成签到,获得积分10
3秒前
Y.完成签到,获得积分10
4秒前
5秒前
山長发布了新的文献求助10
6秒前
打打应助窝窝头采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
changrao发布了新的文献求助30
7秒前
思源应助zglang511采纳,获得10
8秒前
Jasper应助段凯嘉采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
logo发布了新的文献求助10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
几厘发布了新的文献求助20
10秒前
俊逸飞雪发布了新的文献求助10
10秒前
rock完成签到,获得积分10
10秒前
lilili应助卷卷采纳,获得10
11秒前
11秒前
13秒前
超级的鞅完成签到,获得积分20
13秒前
无聊的书生完成签到,获得积分10
13秒前
沧海一粟关注了科研通微信公众号
14秒前
14秒前
14秒前
张欣宇应助lr采纳,获得10
15秒前
15秒前
传奇3应助笑哈哈采纳,获得10
16秒前
Lucas应助小枫采纳,获得10
16秒前
17秒前
17秒前
燕子完成签到,获得积分10
17秒前
浮游应助明理的帆布鞋采纳,获得10
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694252
求助须知:如何正确求助?哪些是违规求助? 5096658
关于积分的说明 15213516
捐赠科研通 4850904
什么是DOI,文献DOI怎么找? 2602050
邀请新用户注册赠送积分活动 1553901
关于科研通互助平台的介绍 1511836