已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An enhanced ResNet-50 deep learning model for arrhythmia detection using electrocardiogram biomedical indicators

计算机科学 深度学习 人工智能 卷积神经网络 心律失常 机器学习 人工神经网络 数据挖掘 模式识别(心理学) 心房颤动 医学 内科学
作者
R. Anand,S. Lakshmi,D. K. Pandey,Binay Kumar Pandey
出处
期刊:Evolving Systems [Springer Nature]
卷期号:15 (1): 83-97 被引量:63
标识
DOI:10.1007/s12530-023-09559-0
摘要

Electrocardiogram (ECG) is one among the most common detecting techniques in the analysis and detection of cardiac arrhythmia adopted due to its cost efficiency and simplicity. In a clinical routine, ECG database is collected on daily basis and these databases are reviewed manually. Along with other conventional methods, various approaches using machine learning has been proposed in the past few years. But these would require in-depth knowledge on several parameters and pre-processing techniques in the specific domain. This study is aimed at implementing a more reliable deep learning model that has the capacity to diagnose arrhythmia from a database with 109,446 samples in 5 different categories. In our proposed work, we have used deep learning methodologies for the diagnosis and detection of cardiac arrhythmia automatically. Balancing the biasedness in the waveforms from MIT-BIH arrhythmia database, model is developed. MIT-BIH arrhythmia database with the ECG waveforms promises good accuracy. This automated prediction of the disease using CNN and ResNet-18 architectures are compared in terms of accuracy. CNN has accuracy approximately 97.86% and 98.14% for improved ResNet-18. Also, a comparative analysis is done with the proposed model and already existing techniques. Several limitations and future opportunities are also reviewed. We believe it can be used considerably for cardiac arrhythmia prediction worldwide. Based on the results obtained, ResNet-18 architecture can be used as an efficient procedure, that reduces the burden of training a deep convolutional neural network from start, resulting in a technique that is simple to use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
pjs发布了新的文献求助10
4秒前
初昀杭发布了新的文献求助10
6秒前
暮晓见完成签到 ,获得积分10
7秒前
xxx完成签到 ,获得积分10
10秒前
宋甜甜完成签到,获得积分10
13秒前
小蘑菇应助zz采纳,获得10
14秒前
17秒前
在水一方应助海棠依旧采纳,获得10
17秒前
pjs完成签到,获得积分10
19秒前
脑洞疼应助凶狠的猎豹采纳,获得10
19秒前
科研狗完成签到,获得积分10
20秒前
绿袖子完成签到,获得积分10
22秒前
xxx发布了新的文献求助10
23秒前
Amancio118完成签到 ,获得积分10
23秒前
思源应助pjs采纳,获得10
23秒前
29秒前
32秒前
32秒前
霸体廉颇完成签到,获得积分10
33秒前
海棠依旧发布了新的文献求助10
33秒前
一只熊完成签到 ,获得积分10
37秒前
孝艺完成签到 ,获得积分10
37秒前
zz发布了新的文献求助10
39秒前
40秒前
gaoxiaogao完成签到 ,获得积分10
40秒前
乐乐乐乐乐乐应助嘎嘎采纳,获得10
41秒前
姜sir完成签到 ,获得积分10
44秒前
海棠依旧完成签到,获得积分20
46秒前
46秒前
天天快乐应助_XXxxXX_采纳,获得10
48秒前
笙璃完成签到 ,获得积分10
49秒前
51秒前
53秒前
Fan完成签到 ,获得积分10
54秒前
寻道图强应助科研通管家采纳,获得30
55秒前
阿尼亚发布了新的文献求助10
55秒前
星辰大海应助科研通管家采纳,获得30
55秒前
m1nt完成签到,获得积分10
55秒前
57秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139400
求助须知:如何正确求助?哪些是违规求助? 2790323
关于积分的说明 7794903
捐赠科研通 2446762
什么是DOI,文献DOI怎么找? 1301366
科研通“疑难数据库(出版商)”最低求助积分说明 626153
版权声明 601141