Prompted representation joint contrastive learning for aspect-based sentiment analysis

计算机科学 情绪分析 自然语言处理 人工智能 特征学习 图形 依赖关系图 多任务学习 依赖关系(UML) 语法 稳健性(进化) 粒度 代表(政治) 机器学习 任务(项目管理) 理论计算机科学 法学 管理 基因 化学 经济 操作系统 政治 生物化学 政治学
作者
Xuefeng Shi,Min Hu,Fuji Ren,Piao Shi
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:285: 111345-111345 被引量:3
标识
DOI:10.1016/j.knosys.2023.111345
摘要

As a fine-grained and challenging subtask in the natural language processing (NLP) community, aspect-based sentiment analysis (ABSA) aims to predict the sentiment polarity towards a given aspect term. In previous ABSA research, most works utilized the pre-trained language model (PLM) as the backbone of their proposed methods, without any specific task-related instructions. Besides, some works focused on learning the dependency information or the external knowledge-enhanced dependency information separately, which lacked the exploitation of the mutual interaction between the normal dependency and knowledge-enhanced dependency. Therefore, we propose a novel ABSA method namely prompted representation joint contrastive learning enhanced graph convolutional networks (PRCL-GCN) to strengthen the robustness of the ABSA model. Specifically, to achieve the task-oriented contextual representation, we design the task-specific prompt template to guide the fine-tuning process of PLM in the ABSA task. And a biaffine attention mechanism is employed to further extract the essential sentiment feature from the prompted representation. Moreover, we introduce the syntax dependency graph as prior knowledge, and construct an affective syntactic dependency graph by injecting the affective knowledge from SenticNet into the graph. Then, we utilize the multi-layer GCNs to process the above two syntactic graphs independently, which aims to learn multi-granularity syntactic features. Subsequently, a novel designed attention variant is leveraged to integrate these syntax features with the guided contextual representation, separately. Eventually, through designing a Kullback–Leibler divergence-based contrastive learning to encourage the model’s learning, we improve the model’s accuracy in modeling contextual representation by integrating the designed dual-ways information. Extensive experiments are conducted on five benchmark datasets, and the outstanding experiment results validate the effectiveness of our proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小点点发布了新的文献求助10
刚刚
1秒前
2秒前
2秒前
4秒前
6秒前
美好向松发布了新的文献求助10
7秒前
zyy发布了新的文献求助10
7秒前
婷婷应助高高的无敌采纳,获得10
7秒前
张秋雨发布了新的文献求助50
8秒前
嘀哩呱啦啦完成签到 ,获得积分10
8秒前
Raylihuang发布了新的文献求助10
9秒前
10秒前
10秒前
认真学习发布了新的文献求助10
10秒前
13秒前
Fancy完成签到,获得积分10
14秒前
婷婷应助白影柒采纳,获得10
14秒前
15秒前
nenoaowu完成签到,获得积分10
15秒前
可爱向卉发布了新的文献求助10
15秒前
PrayOne完成签到 ,获得积分10
16秒前
16秒前
军伊芷兰完成签到,获得积分10
16秒前
n张黎明完成签到,获得积分10
17秒前
叁壹捌发布了新的文献求助20
17秒前
NexusExplorer应助栀初采纳,获得10
18秒前
zyy完成签到,获得积分20
18秒前
秋刀鱼发布了新的文献求助20
18秒前
Unlung发布了新的文献求助10
19秒前
lonelymusic完成签到,获得积分10
20秒前
xueliang完成签到,获得积分10
21秒前
清脆秋翠完成签到,获得积分10
23秒前
美好向松完成签到,获得积分10
24秒前
orchid完成签到,获得积分10
25秒前
派大星完成签到,获得积分10
25秒前
科目三应助叁壹捌采纳,获得20
27秒前
27秒前
一直成长完成签到,获得积分10
27秒前
28秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164329
求助须知:如何正确求助?哪些是违规求助? 2815119
关于积分的说明 7907636
捐赠科研通 2474677
什么是DOI,文献DOI怎么找? 1317626
科研通“疑难数据库(出版商)”最低求助积分说明 631871
版权声明 602234