Prompted representation joint contrastive learning for aspect-based sentiment analysis

计算机科学 情绪分析 自然语言处理 人工智能 特征学习 图形 依赖关系图 多任务学习 依赖关系(UML) 语法 稳健性(进化) 粒度 代表(政治) 机器学习 任务(项目管理) 理论计算机科学 法学 管理 基因 化学 经济 操作系统 政治 生物化学 政治学
作者
Xuefeng Shi,Min Hu,Fuji Ren,Piao Shi
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:285: 111345-111345 被引量:7
标识
DOI:10.1016/j.knosys.2023.111345
摘要

As a fine-grained and challenging subtask in the natural language processing (NLP) community, aspect-based sentiment analysis (ABSA) aims to predict the sentiment polarity towards a given aspect term. In previous ABSA research, most works utilized the pre-trained language model (PLM) as the backbone of their proposed methods, without any specific task-related instructions. Besides, some works focused on learning the dependency information or the external knowledge-enhanced dependency information separately, which lacked the exploitation of the mutual interaction between the normal dependency and knowledge-enhanced dependency. Therefore, we propose a novel ABSA method namely prompted representation joint contrastive learning enhanced graph convolutional networks (PRCL-GCN) to strengthen the robustness of the ABSA model. Specifically, to achieve the task-oriented contextual representation, we design the task-specific prompt template to guide the fine-tuning process of PLM in the ABSA task. And a biaffine attention mechanism is employed to further extract the essential sentiment feature from the prompted representation. Moreover, we introduce the syntax dependency graph as prior knowledge, and construct an affective syntactic dependency graph by injecting the affective knowledge from SenticNet into the graph. Then, we utilize the multi-layer GCNs to process the above two syntactic graphs independently, which aims to learn multi-granularity syntactic features. Subsequently, a novel designed attention variant is leveraged to integrate these syntax features with the guided contextual representation, separately. Eventually, through designing a Kullback–Leibler divergence-based contrastive learning to encourage the model’s learning, we improve the model’s accuracy in modeling contextual representation by integrating the designed dual-ways information. Extensive experiments are conducted on five benchmark datasets, and the outstanding experiment results validate the effectiveness of our proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助科研通管家采纳,获得10
刚刚
小马甲应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
Akiba完成签到,获得积分10
1秒前
完美世界应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
Wianiu应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
宇宙法完成签到,获得积分10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
斯文明杰发布了新的文献求助10
4秒前
天天快乐应助勾晓彤采纳,获得10
4秒前
4秒前
Profeto应助胡先生的小口袋采纳,获得10
5秒前
Profeto应助胡先生的小口袋采纳,获得10
6秒前
科研q完成签到 ,获得积分10
6秒前
6秒前
6秒前
Ava应助zhuzhu采纳,获得10
6秒前
6秒前
节步青发布了新的文献求助10
8秒前
小邢发布了新的文献求助10
8秒前
桐桐应助端庄煎饼采纳,获得10
9秒前
里大炮发布了新的文献求助10
10秒前
wozai发布了新的文献求助10
10秒前
社会主义接班人完成签到,获得积分10
10秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5215597
求助须知:如何正确求助?哪些是违规求助? 4390701
关于积分的说明 13670504
捐赠科研通 4252590
什么是DOI,文献DOI怎么找? 2333220
邀请新用户注册赠送积分活动 1330838
关于科研通互助平台的介绍 1284652