Prompted representation joint contrastive learning for aspect-based sentiment analysis

计算机科学 情绪分析 自然语言处理 人工智能 特征学习 图形 依赖关系图 多任务学习 依赖关系(UML) 语法 稳健性(进化) 粒度 代表(政治) 机器学习 任务(项目管理) 理论计算机科学 法学 管理 基因 化学 经济 操作系统 政治 生物化学 政治学
作者
Xuefeng Shi,Min Hu,Fuji Ren,Piao Shi
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:285: 111345-111345 被引量:7
标识
DOI:10.1016/j.knosys.2023.111345
摘要

As a fine-grained and challenging subtask in the natural language processing (NLP) community, aspect-based sentiment analysis (ABSA) aims to predict the sentiment polarity towards a given aspect term. In previous ABSA research, most works utilized the pre-trained language model (PLM) as the backbone of their proposed methods, without any specific task-related instructions. Besides, some works focused on learning the dependency information or the external knowledge-enhanced dependency information separately, which lacked the exploitation of the mutual interaction between the normal dependency and knowledge-enhanced dependency. Therefore, we propose a novel ABSA method namely prompted representation joint contrastive learning enhanced graph convolutional networks (PRCL-GCN) to strengthen the robustness of the ABSA model. Specifically, to achieve the task-oriented contextual representation, we design the task-specific prompt template to guide the fine-tuning process of PLM in the ABSA task. And a biaffine attention mechanism is employed to further extract the essential sentiment feature from the prompted representation. Moreover, we introduce the syntax dependency graph as prior knowledge, and construct an affective syntactic dependency graph by injecting the affective knowledge from SenticNet into the graph. Then, we utilize the multi-layer GCNs to process the above two syntactic graphs independently, which aims to learn multi-granularity syntactic features. Subsequently, a novel designed attention variant is leveraged to integrate these syntax features with the guided contextual representation, separately. Eventually, through designing a Kullback–Leibler divergence-based contrastive learning to encourage the model’s learning, we improve the model’s accuracy in modeling contextual representation by integrating the designed dual-ways information. Extensive experiments are conducted on five benchmark datasets, and the outstanding experiment results validate the effectiveness of our proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Daisykiller完成签到,获得积分10
刚刚
默默地读文献应助czh采纳,获得10
刚刚
lulu发布了新的文献求助10
1秒前
2秒前
HYQ发布了新的文献求助10
3秒前
Chii完成签到,获得积分10
4秒前
zhangwenqiao发布了新的文献求助10
5秒前
5秒前
科研通AI5应助Ln采纳,获得10
6秒前
6秒前
7秒前
含糊的小松鼠完成签到,获得积分10
7秒前
7秒前
桐桐应助彩色的惊蛰采纳,获得10
8秒前
9秒前
9秒前
11秒前
是微微发布了新的文献求助10
11秒前
12秒前
琉璃岁月发布了新的文献求助10
12秒前
3333发布了新的文献求助30
12秒前
王金金发布了新的文献求助10
13秒前
丘比特应助MRM采纳,获得10
13秒前
传奇3应助lulu采纳,获得10
14秒前
Akim应助shanchin采纳,获得10
15秒前
GS_lly发布了新的文献求助10
16秒前
云隐完成签到,获得积分10
16秒前
16秒前
薄荷778发布了新的文献求助10
17秒前
小马甲应助是微微采纳,获得10
17秒前
科研小风完成签到,获得积分10
18秒前
知性的剑身完成签到 ,获得积分10
19秒前
Akim应助慧敏采纳,获得10
19秒前
费雪卉完成签到,获得积分0
19秒前
20秒前
21秒前
SciGPT应助风趣的鸭子采纳,获得10
22秒前
Grace_Peng完成签到,获得积分20
22秒前
zhangyidian应助科研小风采纳,获得30
22秒前
sia完成签到 ,获得积分10
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672688
求助须知:如何正确求助?哪些是违规求助? 3228855
关于积分的说明 9782298
捐赠科研通 2939285
什么是DOI,文献DOI怎么找? 1610759
邀请新用户注册赠送积分活动 760719
科研通“疑难数据库(出版商)”最低求助积分说明 736198