Individual PEEP in Obesity: Comment

医学 肥胖 重症监护医学 内科学
作者
Roberto González,Felipe Maldonado,Rodrigo Cornejo
出处
期刊:Anesthesiology [Ovid Technologies (Wolters Kluwer)]
卷期号:140 (5): 1050-1051 被引量:1
标识
DOI:10.1097/aln.0000000000004882
摘要

We read with great interest the article published by Li et al.,1 which addresses a topic still under discussion in the literature: the individualization of positive end-expiratory pressure (PEEP) in mechanically ventilated patients during surgery. In this study, the authors compared the development of atelectasis in patients with obesity undergoing laparoscopic bariatric surgery using two mechanical ventilation strategies. The first ventilatory strategy included a titrated PEEP, whereas the second used a fixed PEEP of 8 cm H2O (both used low and comparable tidal volumes). The main finding obtained by the authors was a 3.7% difference in the development of atelectasis in the first postoperative hour in favor of the titrated PEEP strategy.Although the results are interesting, we would like to raise the following points:First, the difference in the percentages of patients with atelectasis was small and had little clinical relevance. This finding could be related to the fact that both groups underwent a recruitment maneuver after anesthesia induction, introducing bias. It would have been more interesting to know the results when comparing a strategy without recruitment maneuvers and fixed PEEP versus "open lung" and individualized PEEP. Comparisons between high and low fixed PEEP strategies have not shown any difference in the literature.2,3Second, the percentage of atelectatic lung parenchyma was 13.1% and 9.5% in the fixed and individualized PEEP groups, respectively, which was superior to those obtained in other studies related to PEEP individualization in anesthetized patients.4 If we add the poorly aerated parenchyma to the nonaerated lung compartment, the percentage of not–well aerated lung increases up to 41.9% and 39.4%, respectively. Although both groups received a recruitment maneuver before starting pneumoperitoneum, the respiratory mechanical conditions changed once the pneumoperitoneum was established. An increase in the intraabdominal pressure is transmitted to the thorax, increasing the probability of alveolar collapse and the need for higher PEEP.5 The addition of 2 cm H2O to individualized PEEP, as performed in this protocol, was not sufficient to avoid alveolar collapse. To prevent this phenomenon, two approaches can be used: (1) a recruitment maneuver followed by PEEP titration with the pneumoperitoneum in place, which is perfectly feasible if coordinated with the surgical team; or (2) obtaining the airway opening pressure by using a low-flow maneuver at a low respiratory rate under low PEEP.6Third, the use of dynamic compliance in the choice of individualized PEEP is striking. Most studies have used quasi-static compliance for PEEP titration with the aim of minimizing the resistive component, as shown in the equation of movement of the respiratory system: P = Flow × resistance + tidal volume × elastance + PEEP.7 With the intention of being pragmatic, concepts of physiology, such as the individualization of resistive and elastic components that generate pressure, can be lost. In addition, a prolonged expiratory pause is not necessary to obtain reliable alveolar pressure; 0.4 s is enough, which makes the maneuver feasible in the operating room setting. Under zero-flow conditions, we obtain the plateau pressure and calculate the static compliance using the following formula: Vt/(Plateau pressure – PEEP). Driving pressure (Plateau – PEEP) is the parameter best correlated in the literature with ventilator-induced lung injury and is commonly used for PEEP titration in most articles in different clinical scenarios.8,9Finally, it is interesting to highlight the wide variability that the authors observed in individualized PEEP, independent of the body mass index. This can be clearly illustrated in two extreme cases with body mass index of 35 and close to 55, where both patients received the same individualized PEEP. This finding supports the concept that there are no demographic or anthropometric parameters that allow the use of fixed PEEP in a specific group of patients. Consequently, it is pertinent to continue investigating the individualization of ventilatory parameters to reduce the incidence of postoperative pulmonary complications.The authors declare no competing interests.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水博士发布了新的文献求助10
1秒前
研友_VZG7GZ应助糊涂的汽车采纳,获得10
2秒前
一线西风发布了新的文献求助10
2秒前
hanhanhan发布了新的文献求助50
2秒前
AJ发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
3秒前
kkkhhh发布了新的文献求助10
4秒前
天天快乐应助SEV采纳,获得10
4秒前
悦耳安莲完成签到,获得积分20
4秒前
传奇3应助张123采纳,获得10
4秒前
zgh5615完成签到,获得积分10
4秒前
Taki发布了新的文献求助10
4秒前
星辰大海应助Duxize采纳,获得10
6秒前
6秒前
7秒前
cj发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
9秒前
9秒前
10秒前
11秒前
开心夏旋完成签到,获得积分10
11秒前
嘞是举仔应助专注的草丛采纳,获得20
12秒前
好好好完成签到,获得积分10
12秒前
洁净如音完成签到,获得积分10
12秒前
wheeler1发布了新的文献求助10
12秒前
浮云发布了新的文献求助30
13秒前
13秒前
13秒前
Redamancy完成签到,获得积分10
14秒前
盒子完成签到,获得积分20
14秒前
开心夏旋发布了新的文献求助10
15秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695511
求助须知:如何正确求助?哪些是违规求助? 5102149
关于积分的说明 15216311
捐赠科研通 4851790
什么是DOI,文献DOI怎么找? 2602705
邀请新用户注册赠送积分活动 1554389
关于科研通互助平台的介绍 1512420