Individual PEEP in Obesity: Comment

医学 肥胖 重症监护医学 内科学
作者
Roberto González,Felipe Maldonado,Rodrigo Cornejo
出处
期刊:Anesthesiology [Ovid Technologies (Wolters Kluwer)]
卷期号:140 (5): 1050-1051 被引量:1
标识
DOI:10.1097/aln.0000000000004882
摘要

We read with great interest the article published by Li et al.,1 which addresses a topic still under discussion in the literature: the individualization of positive end-expiratory pressure (PEEP) in mechanically ventilated patients during surgery. In this study, the authors compared the development of atelectasis in patients with obesity undergoing laparoscopic bariatric surgery using two mechanical ventilation strategies. The first ventilatory strategy included a titrated PEEP, whereas the second used a fixed PEEP of 8 cm H2O (both used low and comparable tidal volumes). The main finding obtained by the authors was a 3.7% difference in the development of atelectasis in the first postoperative hour in favor of the titrated PEEP strategy.Although the results are interesting, we would like to raise the following points:First, the difference in the percentages of patients with atelectasis was small and had little clinical relevance. This finding could be related to the fact that both groups underwent a recruitment maneuver after anesthesia induction, introducing bias. It would have been more interesting to know the results when comparing a strategy without recruitment maneuvers and fixed PEEP versus "open lung" and individualized PEEP. Comparisons between high and low fixed PEEP strategies have not shown any difference in the literature.2,3Second, the percentage of atelectatic lung parenchyma was 13.1% and 9.5% in the fixed and individualized PEEP groups, respectively, which was superior to those obtained in other studies related to PEEP individualization in anesthetized patients.4 If we add the poorly aerated parenchyma to the nonaerated lung compartment, the percentage of not–well aerated lung increases up to 41.9% and 39.4%, respectively. Although both groups received a recruitment maneuver before starting pneumoperitoneum, the respiratory mechanical conditions changed once the pneumoperitoneum was established. An increase in the intraabdominal pressure is transmitted to the thorax, increasing the probability of alveolar collapse and the need for higher PEEP.5 The addition of 2 cm H2O to individualized PEEP, as performed in this protocol, was not sufficient to avoid alveolar collapse. To prevent this phenomenon, two approaches can be used: (1) a recruitment maneuver followed by PEEP titration with the pneumoperitoneum in place, which is perfectly feasible if coordinated with the surgical team; or (2) obtaining the airway opening pressure by using a low-flow maneuver at a low respiratory rate under low PEEP.6Third, the use of dynamic compliance in the choice of individualized PEEP is striking. Most studies have used quasi-static compliance for PEEP titration with the aim of minimizing the resistive component, as shown in the equation of movement of the respiratory system: P = Flow × resistance + tidal volume × elastance + PEEP.7 With the intention of being pragmatic, concepts of physiology, such as the individualization of resistive and elastic components that generate pressure, can be lost. In addition, a prolonged expiratory pause is not necessary to obtain reliable alveolar pressure; 0.4 s is enough, which makes the maneuver feasible in the operating room setting. Under zero-flow conditions, we obtain the plateau pressure and calculate the static compliance using the following formula: Vt/(Plateau pressure – PEEP). Driving pressure (Plateau – PEEP) is the parameter best correlated in the literature with ventilator-induced lung injury and is commonly used for PEEP titration in most articles in different clinical scenarios.8,9Finally, it is interesting to highlight the wide variability that the authors observed in individualized PEEP, independent of the body mass index. This can be clearly illustrated in two extreme cases with body mass index of 35 and close to 55, where both patients received the same individualized PEEP. This finding supports the concept that there are no demographic or anthropometric parameters that allow the use of fixed PEEP in a specific group of patients. Consequently, it is pertinent to continue investigating the individualization of ventilatory parameters to reduce the incidence of postoperative pulmonary complications.The authors declare no competing interests.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助张坤采纳,获得10
1秒前
3秒前
D&L发布了新的文献求助10
3秒前
3秒前
wloe应助小茗采纳,获得10
4秒前
5秒前
段舍离发布了新的文献求助10
5秒前
6秒前
6秒前
looklook发布了新的文献求助30
6秒前
6秒前
ali完成签到,获得积分10
6秒前
酷波er应助AAAaa采纳,获得10
7秒前
yumieer发布了新的文献求助10
7秒前
轻松的囧发布了新的文献求助10
8秒前
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
10秒前
慕青应助zoey采纳,获得10
10秒前
Mireia发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
Zzz_Carlos完成签到,获得积分10
11秒前
薇w发布了新的文献求助10
11秒前
明芬发布了新的文献求助10
11秒前
12秒前
坦率灵槐发布了新的文献求助10
13秒前
13秒前
刘小蕊发布了新的文献求助20
13秒前
13秒前
溜溜蛋发布了新的文献求助10
14秒前
EN发布了新的文献求助10
14秒前
柠檬完成签到,获得积分10
14秒前
鲜于枫发布了新的文献求助10
15秒前
15秒前
沙隆巴斯发布了新的文献求助10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468653
求助须知:如何正确求助?哪些是违规求助? 4571995
关于积分的说明 14333271
捐赠科研通 4498777
什么是DOI,文献DOI怎么找? 2464700
邀请新用户注册赠送积分活动 1453311
关于科研通互助平台的介绍 1427921