Collaborative Embedding Learning via Tensor Integration for Multi-View Clustering

嵌入 聚类分析 张量(固有定义) 计算机科学 人工智能 机器学习 数学 纯数学
作者
Yue Zhang,Xin Sun,Hongmin Cai,Haiyan Wang,Jiazhou Chen,Endai Guo,Fei Qi,Junyu Li
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:8 (2): 1841-1852 被引量:4
标识
DOI:10.1109/tetci.2024.3353037
摘要

Multi-view clustering exploits the complementary information of different views for comprehensive data analysis. Recently, graph learning techniques with low-dimensional embedding have been developed to learn consensus affinity graph for multi-view clustering. However, projecting data into the low-dimensional space has often resulted in the compression of data information, which is insufficient for graph learning. To address this challenge, this paper proposes a Collaborative Embedding Learning via Tensor (CELT) method, which learns intra-view affinity graphs for each view from both the original space and the low-dimensional space jointly. Additionally, all intra-view affinity graphs are stacked into a tensor, allowing the learning of a consensus affinity to capture inter-view consistency. In this way, an enhanced consensus affinity is obtained to improve the performance of multi-view clustering. Extensive experimental results on eight real-world datasets demonstrate that the proposed collaborative learning framework is effective for graph learning and outperforms competitive multi-view clustering methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助MM采纳,获得10
刚刚
努力考博发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
1秒前
儒雅鞋子发布了新的文献求助10
1秒前
Tengchao发布了新的文献求助10
2秒前
椰壳发布了新的文献求助10
2秒前
2秒前
NCU-Xzzzz完成签到,获得积分10
2秒前
snakke完成签到,获得积分10
3秒前
Henry完成签到,获得积分10
3秒前
shine发布了新的文献求助10
3秒前
沉溺发布了新的文献求助10
3秒前
Cindy发布了新的文献求助10
3秒前
全球首富发布了新的文献求助50
3秒前
4秒前
Akim应助光而不耀采纳,获得10
4秒前
4秒前
Kate发布了新的文献求助10
5秒前
蓝胖子完成签到 ,获得积分10
5秒前
友好的镜子完成签到,获得积分10
5秒前
5秒前
5秒前
wanci应助创不可贴采纳,获得10
6秒前
zoey完成签到,获得积分10
6秒前
6秒前
6秒前
大白发布了新的文献求助10
6秒前
7秒前
霸气的忆丹完成签到,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
冰火油条虾完成签到 ,获得积分10
8秒前
8秒前
佳洛父亲完成签到,获得积分10
8秒前
桃李不言发布了新的文献求助10
8秒前
welbeck完成签到,获得积分10
8秒前
小小鱼发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645714
求助须知:如何正确求助?哪些是违规求助? 4769624
关于积分的说明 15031726
捐赠科研通 4804481
什么是DOI,文献DOI怎么找? 2569019
邀请新用户注册赠送积分活动 1526095
关于科研通互助平台的介绍 1485700