多孔性
材料科学
化学工程
聚电解质
发泡剂
微型多孔材料
聚合物
水溶液
造型(装饰)
混合(物理)
复合材料
化学
有机化学
量子力学
物理
工程类
作者
Zi‐Xuan Liang,Haodong Chen,Chun-Kui Hu,Yi-Xuan Fang,You‐Peng Fang,Chunxin Lü,Jing Wang,Li Mi,Xia‐Chao Chen
出处
期刊:Langmuir
[American Chemical Society]
日期:2024-01-09
标识
DOI:10.1021/acs.langmuir.3c03285
摘要
Polyelectrolyte complexes (PECs) have emerged as an attractive category of materials for their water processability and some similarities to natural biopolymers. Herein, we employ the intrinsic hydroplasticity of PEC materials to enable the generation of porous structures with the aid of gas foaming. Such foamable materials are fabricated by simply mixing polycation, polyanion, and a UV-initiated chemical foaming agent in an aqueous solution, followed by molding into thin films. The gas foaming of the PEC films can be achieved upon exposure to UV illumination under water, where the films are plasticized and the gaseous products from the photolysis of foaming agents afford the formation, expanding, and merging of numerous bubbles. The porosity and morphology of the resulting porous films can be customized by tuning film composition, foaming conditions, and especially the degree of plasticizing effect, illustrating the high flexibility of this hydroplastic foaming method. Due to the rapid initiation of gas foaming, the present method enables the formation of porous structures via an instant one-step process, much more efficient than those existing strategies for porous PEC materials. More importantly, such a pore-forming mechanism might be extended to other hydroplastic materials (e.g., biopolymers) and help to yield hydroplasticity-based processing strategies.
科研通智能强力驱动
Strongly Powered by AbleSci AI