Applying traffic camera and deep learning-based image analysis to predict PM2.5 concentrations

均方误差 随机森林 人工神经网络 特征(语言学) 计算机科学 空气质量指数 深度学习 人工智能 环境科学 遥感 气象学 统计 数学 地理 语言学 哲学
作者
Yanming Liu,Yuxi Zhang,Pei Yu,Tingting Ye,Yiwen Zhang,Rongbin Xu,Shanshan Li,Yuming Guo
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:912: 169233-169233
标识
DOI:10.1016/j.scitotenv.2023.169233
摘要

Air pollution has caused a significant burden in terms of mortality and mobility worldwide. However, the current coverage of air quality monitoring networks is still limited.This study aims to apply a novel approach to convert the existing traffic cameras into sensors measuring particulate matter with a diameter of 2.5 μm or less (PM2.5) so that the coverage of PM2.5 monitoring could be expanded without extra cost.In our study, the traffic camera images were collected at a rate of 4 images/h and the corresponding hourly PM2.5 concentration was collected from the reference grade PM2.5 station 3 km away. A customized neural network model was trained to obtain the PM2.5 concentration from images followed by a random forest model to predict the hourly PM2.5 concentration. The saliency maps and the feature importance were utilized to interpret the neural network.Proposed novel approach has a high prediction performance to predict hourly PM2.5 from traffic camera images, with a root mean square error (RMSE) of 0.76 μg/m3 and a coefficient of determination (R2) of 0.98. The saliency map shows neural network focuses on unobstructed far-end road surfaces while the random forest feature importance highlights the first quarter image's significance. The model performance is robust whether weather conditions are controlled or not.Our study provided a practical approach to converting the existing traffic cameras into PM2.5 sensors. The deep learning method based on the Resnet architecture in our study can broaden the coverage of PM2.5 monitoring with no additional infrastructure needed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
百里一笑发布了新的文献求助80
2秒前
吴晓晓完成签到,获得积分20
2秒前
rushfuture发布了新的文献求助10
4秒前
欧阳静芙完成签到,获得积分10
4秒前
星辰大海应助韩达大采纳,获得10
4秒前
球闪发布了新的文献求助10
5秒前
Owen应助浅浅采纳,获得10
5秒前
研友_8WO978发布了新的文献求助10
5秒前
yuan完成签到,获得积分10
7秒前
hu完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
风卷残云发布了新的文献求助10
9秒前
9秒前
明理静柏完成签到,获得积分10
10秒前
10秒前
10秒前
乐乐应助张欣怡采纳,获得10
10秒前
sheepy发布了新的文献求助10
11秒前
冷艳紫南发布了新的文献求助20
11秒前
11秒前
13秒前
14秒前
14秒前
mm完成签到 ,获得积分10
14秒前
王星星发布了新的文献求助10
15秒前
16秒前
16秒前
GuMingyang发布了新的文献求助10
17秒前
玉子发布了新的文献求助10
17秒前
18秒前
快乐修勾完成签到 ,获得积分10
18秒前
19秒前
领导范儿应助王星星采纳,获得10
19秒前
颜安发布了新的文献求助10
19秒前
20秒前
CipherSage应助τ涛采纳,获得10
20秒前
脑洞疼应助lcj1014采纳,获得10
20秒前
千里发布了新的文献求助10
21秒前
浅浅发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5778513
求助须知:如何正确求助?哪些是违规求助? 5641999
关于积分的说明 15449665
捐赠科研通 4910179
什么是DOI,文献DOI怎么找? 2642469
邀请新用户注册赠送积分活动 1590270
关于科研通互助平台的介绍 1544599