Applying traffic camera and deep learning-based image analysis to predict PM2.5 concentrations

均方误差 随机森林 人工神经网络 特征(语言学) 计算机科学 空气质量指数 深度学习 人工智能 环境科学 遥感 气象学 统计 数学 地理 语言学 哲学
作者
Yanming Liu,Yuxi Zhang,Pei Yu,Tingting Ye,Yiwen Zhang,Rongbin Xu,Shanshan Li,Yuming Guo
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:912: 169233-169233
标识
DOI:10.1016/j.scitotenv.2023.169233
摘要

Air pollution has caused a significant burden in terms of mortality and mobility worldwide. However, the current coverage of air quality monitoring networks is still limited.This study aims to apply a novel approach to convert the existing traffic cameras into sensors measuring particulate matter with a diameter of 2.5 μm or less (PM2.5) so that the coverage of PM2.5 monitoring could be expanded without extra cost.In our study, the traffic camera images were collected at a rate of 4 images/h and the corresponding hourly PM2.5 concentration was collected from the reference grade PM2.5 station 3 km away. A customized neural network model was trained to obtain the PM2.5 concentration from images followed by a random forest model to predict the hourly PM2.5 concentration. The saliency maps and the feature importance were utilized to interpret the neural network.Proposed novel approach has a high prediction performance to predict hourly PM2.5 from traffic camera images, with a root mean square error (RMSE) of 0.76 μg/m3 and a coefficient of determination (R2) of 0.98. The saliency map shows neural network focuses on unobstructed far-end road surfaces while the random forest feature importance highlights the first quarter image's significance. The model performance is robust whether weather conditions are controlled or not.Our study provided a practical approach to converting the existing traffic cameras into PM2.5 sensors. The deep learning method based on the Resnet architecture in our study can broaden the coverage of PM2.5 monitoring with no additional infrastructure needed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪明无施完成签到 ,获得积分10
1秒前
zyz完成签到,获得积分10
1秒前
1秒前
1秒前
vv完成签到,获得积分10
1秒前
Jeffreyluo完成签到,获得积分10
2秒前
好好读书应助核桃采纳,获得50
2秒前
3秒前
老迟到的盼海完成签到,获得积分10
3秒前
3秒前
星痕发布了新的文献求助10
4秒前
4秒前
Www发布了新的文献求助10
5秒前
王jj发布了新的文献求助10
6秒前
7秒前
科研通AI6应助大咸鱼采纳,获得10
7秒前
wanci应助Sam采纳,获得10
8秒前
bkagyin应助Luhh采纳,获得10
8秒前
超级白昼发布了新的文献求助30
9秒前
研友_Ljb0qL发布了新的文献求助10
10秒前
长情的天寿完成签到,获得积分10
10秒前
vv发布了新的文献求助10
11秒前
11秒前
12秒前
Mrshi完成签到,获得积分10
12秒前
67完成签到,获得积分10
12秒前
momowang发布了新的文献求助10
12秒前
义气的水蓝完成签到,获得积分10
12秒前
爆米花应助lilili采纳,获得10
12秒前
CodeCraft应助司忆采纳,获得10
14秒前
aaa发布了新的文献求助10
14秒前
健康的羽毛关注了科研通微信公众号
14秒前
Jasper应助义气机器猫采纳,获得10
14秒前
俏皮行云完成签到 ,获得积分10
14秒前
Johnlei发布了新的文献求助30
15秒前
15秒前
16秒前
17秒前
张世旗完成签到 ,获得积分10
17秒前
天天发布了新的文献求助10
18秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5583981
求助须知:如何正确求助?哪些是违规求助? 4667534
关于积分的说明 14768286
捐赠科研通 4609869
什么是DOI,文献DOI怎么找? 2529501
邀请新用户注册赠送积分活动 1498583
关于科研通互助平台的介绍 1467223