亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Complimentary Computational Cues for Water Electrocatalysis: A DFT and ML Perspective

电催化剂 纳米技术 可扩展性 计算机科学 材料科学 电解水 生化工程 电解 电化学 化学 工程类 电极 电解质 数据库 物理化学
作者
Ahmed Badreldin,O. Bouhali,Ahmed Abdel‐Wahab
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:34 (12) 被引量:47
标识
DOI:10.1002/adfm.202312425
摘要

Abstract Heterogenous electrocatalysis continues to witness propagating interest in a plethora of non‐limiting electrochemical fields. Of which, water electrolysis has moved from lab‐scale systems to commercial electrolyzers albeit high dependence on historic benchmark noble‐metal based catalysts is still the status quo. Notwithstanding, advances in material groups such as single‐atom catalysts, perovskites, high‐entropy alloys, among others continue to see an increased interest toward utilization in next‐generation electrolyzers. To that end, progress in electrocatalyst discovery techniques is revolutionized through synergistically combining density functional theory (DFT) and machine learning (ML) techniques. The success of ML herein depends on numerous interlinked factors such as the algorithm employed, data availability and accuracy, with descriptors being critical to encapsulate physicochemical perspectives. Historic utilization of ML frameworks in areas other than materials discovery has left a lack of standardization toward appropriating suitable methods of high‐throughput DFT, ML approaches, and feature engineering that bridge the gap between activity‐structure‐electronic relationships. This review outlines needed considerations toward DFT calculations, important criteria during filtering out screened surfaces, and synergistic approaches toward utilizing theoretical and/or experimental datasets for formulating effective ML frameworks. Persisting challenges, perspectives, and recommendations thereof are highlighted to expedite and generalize future work pertaining to high‐volume water electrocatalysis discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助畅快甜瓜采纳,获得30
3秒前
3秒前
14秒前
22秒前
32秒前
34秒前
读书的时候发布了新的文献求助150
41秒前
42秒前
YQQ关闭了YQQ文献求助
43秒前
57秒前
57秒前
阿里完成签到,获得积分10
59秒前
畅快甜瓜发布了新的文献求助30
1分钟前
李爱国应助YQQ采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
赘婿应助畅快甜瓜采纳,获得30
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
矢思然完成签到,获得积分10
1分钟前
1分钟前
寒冷念文发布了新的文献求助10
2分钟前
2分钟前
默默完成签到 ,获得积分10
2分钟前
bkagyin应助寒冷念文采纳,获得10
2分钟前
2分钟前
狂野的含烟完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
ffff完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732177
求助须知:如何正确求助?哪些是违规求助? 5337212
关于积分的说明 15322034
捐赠科研通 4877874
什么是DOI,文献DOI怎么找? 2620700
邀请新用户注册赠送积分活动 1569938
关于科研通互助平台的介绍 1526542