Complimentary Computational Cues for Water Electrocatalysis: A DFT and ML Perspective

电催化剂 纳米技术 可扩展性 计算机科学 材料科学 电解水 生化工程 电解 电化学 化学 工程类 电极 电解质 数据库 物理化学
作者
Ahmed Badreldin,O. Bouhali,Ahmed Abdel‐Wahab
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:34 (12) 被引量:24
标识
DOI:10.1002/adfm.202312425
摘要

Abstract Heterogenous electrocatalysis continues to witness propagating interest in a plethora of non‐limiting electrochemical fields. Of which, water electrolysis has moved from lab‐scale systems to commercial electrolyzers albeit high dependence on historic benchmark noble‐metal based catalysts is still the status quo. Notwithstanding, advances in material groups such as single‐atom catalysts, perovskites, high‐entropy alloys, among others continue to see an increased interest toward utilization in next‐generation electrolyzers. To that end, progress in electrocatalyst discovery techniques is revolutionized through synergistically combining density functional theory (DFT) and machine learning (ML) techniques. The success of ML herein depends on numerous interlinked factors such as the algorithm employed, data availability and accuracy, with descriptors being critical to encapsulate physicochemical perspectives. Historic utilization of ML frameworks in areas other than materials discovery has left a lack of standardization toward appropriating suitable methods of high‐throughput DFT, ML approaches, and feature engineering that bridge the gap between activity‐structure‐electronic relationships. This review outlines needed considerations toward DFT calculations, important criteria during filtering out screened surfaces, and synergistic approaches toward utilizing theoretical and/or experimental datasets for formulating effective ML frameworks. Persisting challenges, perspectives, and recommendations thereof are highlighted to expedite and generalize future work pertaining to high‐volume water electrocatalysis discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
爱月光完成签到,获得积分10
刚刚
无风海发布了新的文献求助10
刚刚
隐形曼青应助潇洒的怜阳采纳,获得10
刚刚
SYLH应助梦寻采纳,获得20
2秒前
搜集达人应助章章采纳,获得10
3秒前
jpzhou12完成签到,获得积分10
3秒前
云云发布了新的文献求助10
4秒前
7秒前
8秒前
领导范儿应助Dracoon采纳,获得10
9秒前
天天快乐应助chengxue采纳,获得10
10秒前
扎心应助无风海采纳,获得10
11秒前
小文cremen发布了新的文献求助10
12秒前
YANA完成签到,获得积分10
12秒前
Santiago完成签到,获得积分10
13秒前
阳光的静白完成签到,获得积分10
13秒前
英俊的铭应助dllz采纳,获得10
14秒前
天天快乐应助觅海采纳,获得10
16秒前
17秒前
LHX关注了科研通微信公众号
17秒前
法官大人完成签到 ,获得积分20
19秒前
潇洒飞丹发布了新的文献求助10
20秒前
酷波er应助Aline采纳,获得10
21秒前
21秒前
科目三应助科研通管家采纳,获得10
22秒前
小蘑菇应助科研通管家采纳,获得10
22秒前
猪猪hero应助科研通管家采纳,获得10
22秒前
CodeCraft应助科研通管家采纳,获得10
22秒前
所所应助科研通管家采纳,获得10
22秒前
Hayat应助科研通管家采纳,获得10
22秒前
Hello应助科研通管家采纳,获得10
22秒前
爆米花应助科研通管家采纳,获得10
22秒前
SciGPT应助科研通管家采纳,获得10
22秒前
23秒前
Lucas应助科研通管家采纳,获得10
23秒前
共享精神应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959245
求助须知:如何正确求助?哪些是违规求助? 3505545
关于积分的说明 11124398
捐赠科研通 3237291
什么是DOI,文献DOI怎么找? 1789026
邀请新用户注册赠送积分活动 871512
科研通“疑难数据库(出版商)”最低求助积分说明 802824