难治性抑郁症
磁刺激
重性抑郁障碍
萧条(经济学)
功能磁共振成像
心理学
医学
物理医学与康复
神经科学
认知
刺激
经济
宏观经济学
作者
Paul Sajda,Xiaoxiao Sun,Jayce Doose,Josef Faller,James R. McIntosh,Golbarg T. Saber,Sarah Huffman,Spiro P. Pantazatos,Han Yuan,Robin I. Goldman,Truman R. Brown,Mark S. George
出处
期刊:Research Square - Research Square
日期:2023-12-05
标识
DOI:10.21203/rs.3.rs-3496521/v1
摘要
Abstract Transcranial magnetic stimulation (TMS) is a non-invasive FDA-approved therapy for major depressive disorder (MDD), specifically for treatment-resistant depression (TRD). Though offering promise for those with TRD, its effectiveness is less than one in two patients (i.e., less than 50%). Limits on efficacy may be due to individual patient variability, but to date, there are no established biomarkers or measures of target engagement that can predict efficacy. Additionally, TMS efficacy is typically not assessed until a six-week treatment ends, precluding interim re-evaluations of the treatment. Here, we report results using a closed-loop phase-locked repetitive TMS (rTMS) treatment that synchronizes the delivery of rTMS based on the timing of the pulses relative to a patient's individual electroencephalographic (EEG) prefrontal alpha oscillation indexed by functional magnetic resonance imaging (fMRI). Among responders, synchronized rTMS produces two systematic changes in brain dynamics: a reduction in global cortical excitability and enhanced phase entrainment of cortical dynamics. These effects predict clinical outcomes in the synchronized treatment group but not in an active-treatment unsynchronized control group. The systematic decrease in excitability and increase in entrainment correlated with treatment efficacy at the endpoint and intermediate weeks during the synchronized treatment. Specifically, we show that weekly biomarker tracking enables efficacy prediction and dynamic adjustments through a treatment course, improving the overall response rates. This innovative approach advances the prospects of individualized medicine in MDD and holds potential for application in other neuropsychiatric disorders.
科研通智能强力驱动
Strongly Powered by AbleSci AI