Biomarkers predict the efficacy of closed-loop rTMS treatment for refractory depression

难治性抑郁症 磁刺激 重性抑郁障碍 萧条(经济学) 功能磁共振成像 心理学 医学 物理医学与康复 神经科学 认知 刺激 宏观经济学 经济
作者
Paul Sajda,Xiaoxiao Sun,Jayce Doose,Josef Faller,James R. McIntosh,Golbarg T. Saber,Sarah Huffman,Spiro P. Pantazatos,Han Yuan,Robin I. Goldman,Truman R. Brown,Mark S. George
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-3496521/v1
摘要

Abstract Transcranial magnetic stimulation (TMS) is a non-invasive FDA-approved therapy for major depressive disorder (MDD), specifically for treatment-resistant depression (TRD). Though offering promise for those with TRD, its effectiveness is less than one in two patients (i.e., less than 50%). Limits on efficacy may be due to individual patient variability, but to date, there are no established biomarkers or measures of target engagement that can predict efficacy. Additionally, TMS efficacy is typically not assessed until a six-week treatment ends, precluding interim re-evaluations of the treatment. Here, we report results using a closed-loop phase-locked repetitive TMS (rTMS) treatment that synchronizes the delivery of rTMS based on the timing of the pulses relative to a patient's individual electroencephalographic (EEG) prefrontal alpha oscillation indexed by functional magnetic resonance imaging (fMRI). Among responders, synchronized rTMS produces two systematic changes in brain dynamics: a reduction in global cortical excitability and enhanced phase entrainment of cortical dynamics. These effects predict clinical outcomes in the synchronized treatment group but not in an active-treatment unsynchronized control group. The systematic decrease in excitability and increase in entrainment correlated with treatment efficacy at the endpoint and intermediate weeks during the synchronized treatment. Specifically, we show that weekly biomarker tracking enables efficacy prediction and dynamic adjustments through a treatment course, improving the overall response rates. This innovative approach advances the prospects of individualized medicine in MDD and holds potential for application in other neuropsychiatric disorders.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梦桃完成签到 ,获得积分10
刚刚
徐什么宝发布了新的文献求助10
1秒前
刻苦向梦发布了新的文献求助10
1秒前
romeo发布了新的文献求助10
2秒前
2秒前
受伤白安发布了新的文献求助10
2秒前
JamesPei应助火速阿百川采纳,获得10
3秒前
丘比特应助liuyu0209采纳,获得10
3秒前
不安青牛应助玛卡采纳,获得10
4秒前
5秒前
5秒前
6秒前
852应助科研通管家采纳,获得30
7秒前
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
7秒前
思源应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
NexusExplorer应助舍我其谁采纳,获得10
8秒前
金金发布了新的文献求助10
8秒前
隐形曼青应助李昕123采纳,获得10
9秒前
蓬蓬发布了新的文献求助10
9秒前
10秒前
hexy629发布了新的文献求助10
11秒前
123456完成签到,获得积分10
11秒前
11秒前
Tomyyh发布了新的文献求助10
12秒前
123456发布了新的文献求助10
12秒前
15秒前
15秒前
kei发布了新的文献求助10
16秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615265
求助须知:如何正确求助?哪些是违规求助? 4700145
关于积分的说明 14906831
捐赠科研通 4741546
什么是DOI,文献DOI怎么找? 2548008
邀请新用户注册赠送积分活动 1511727
关于科研通互助平台的介绍 1473781