Biomarkers predict the efficacy of closed-loop rTMS treatment for refractory depression

难治性抑郁症 磁刺激 重性抑郁障碍 萧条(经济学) 功能磁共振成像 心理学 医学 物理医学与康复 神经科学 认知 刺激 经济 宏观经济学
作者
Paul Sajda,Xiaoxiao Sun,Jayce Doose,Josef Faller,James R. McIntosh,Golbarg T. Saber,Sarah Huffman,Spiro P. Pantazatos,Han Yuan,Robin I. Goldman,Truman R. Brown,Mark S. George
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-3496521/v1
摘要

Abstract Transcranial magnetic stimulation (TMS) is a non-invasive FDA-approved therapy for major depressive disorder (MDD), specifically for treatment-resistant depression (TRD). Though offering promise for those with TRD, its effectiveness is less than one in two patients (i.e., less than 50%). Limits on efficacy may be due to individual patient variability, but to date, there are no established biomarkers or measures of target engagement that can predict efficacy. Additionally, TMS efficacy is typically not assessed until a six-week treatment ends, precluding interim re-evaluations of the treatment. Here, we report results using a closed-loop phase-locked repetitive TMS (rTMS) treatment that synchronizes the delivery of rTMS based on the timing of the pulses relative to a patient's individual electroencephalographic (EEG) prefrontal alpha oscillation indexed by functional magnetic resonance imaging (fMRI). Among responders, synchronized rTMS produces two systematic changes in brain dynamics: a reduction in global cortical excitability and enhanced phase entrainment of cortical dynamics. These effects predict clinical outcomes in the synchronized treatment group but not in an active-treatment unsynchronized control group. The systematic decrease in excitability and increase in entrainment correlated with treatment efficacy at the endpoint and intermediate weeks during the synchronized treatment. Specifically, we show that weekly biomarker tracking enables efficacy prediction and dynamic adjustments through a treatment course, improving the overall response rates. This innovative approach advances the prospects of individualized medicine in MDD and holds potential for application in other neuropsychiatric disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
奋斗灵波发布了新的文献求助10
2秒前
药学牛马发布了新的文献求助10
2秒前
2秒前
科研通AI5应助WZ0904采纳,获得10
3秒前
叶未晞yi发布了新的文献求助10
4秒前
ipeakkka发布了新的文献求助10
5秒前
Jzhang应助迷人的映雁采纳,获得10
5秒前
5秒前
zzz完成签到,获得积分10
6秒前
6秒前
小安发布了新的文献求助10
6秒前
7秒前
叶未晞yi完成签到,获得积分10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得30
9秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
kilig应助科研通管家采纳,获得10
10秒前
10秒前
华仔应助科研通管家采纳,获得30
10秒前
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
博ge发布了新的文献求助10
12秒前
13秒前
葶儿发布了新的文献求助10
13秒前
hgcyp完成签到,获得积分10
18秒前
ysh完成签到,获得积分10
18秒前
18秒前
20秒前
20秒前
21秒前
wang完成签到,获得积分10
22秒前
Jzhang应助Yimim采纳,获得10
23秒前
沐风发布了新的文献求助20
24秒前
汉关发布了新的文献求助10
26秒前
26秒前
葶儿完成签到,获得积分10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824