New modified embedded-atom method interatomic potential to understand deformation behavior in VNbTaTiZr refractory high entropy alloy

原子间势 合金 材料科学 Atom(片上系统) 变形(气象学) 高熵合金 热力学 分子动力学 化学物理 冶金 化学 物理 计算化学 复合材料 计算机科学 嵌入式系统
作者
Mashroor S. Nitol,Marco Echeverria,Khanh Dang,M. I. Baskes,Saryu Fensin
出处
期刊:Computational Materials Science [Elsevier]
卷期号:237: 112886-112886 被引量:2
标识
DOI:10.1016/j.commatsci.2024.112886
摘要

High Entropy Alloys (HEAs) have attracted much interest over the past 20 years because of their remarkable mechanical properties. Recent works on BCC refractory HEAs have demonstrated high strength even at extreme temperatures with an unusual mix of strength and ductility. They also show excellent strain-hardening behavior. This study focuses on the VNbTaTiZr alloy, which stands out for its favorable qualities including relatively low density, impressive yield strength, and ductility at room temperature. To better understand the atomic behavior and microstructural features inherent to this alloy, a Modified Embedded Atom Method (MEAM) potential is developed, based on first-principles computations. Through accurate modeling of lattice constants, elastic constants, and formation enthalpies, a hybrid Molecular Dynamics/Monte Carlo (MD/MC) simulation of an equimolar VNbTaTiZr refractory HEA was performed to explore the role of local chemical compositions to its mechanical response. The current MEAM potential aligns closely with recent experimental work, validating its effectiveness. Adding Zr to the VNbTaTi alloy induces more lattice distortion, matching recent experimental observations. The potential also predicts that for RHEAs, deformation behavior is dominated by edge dislocations, unlike in pure BCC elements where screw dislocations prevail. Overall, this potential will be useful for unraveling the intricate atomic-level processes that give this alloy its remarkable mechanical performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助科研通管家采纳,获得10
刚刚
赘婿应助科研通管家采纳,获得10
刚刚
Tong完成签到,获得积分0
刚刚
Cassie应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
撒啊完成签到,获得积分10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
小王不会看文献完成签到,获得积分10
2秒前
2秒前
2以李完成签到,获得积分10
2秒前
3秒前
3秒前
倩倩完成签到 ,获得积分10
4秒前
4秒前
贝利亚完成签到,获得积分10
4秒前
4秒前
csdv发布了新的文献求助10
4秒前
坚强乌龟完成签到,获得积分10
4秒前
澎鱼盐完成签到,获得积分10
5秒前
5秒前
平淡小丸子完成签到 ,获得积分10
5秒前
吃花生酱的猫完成签到,获得积分10
5秒前
6秒前
Vesper完成签到,获得积分10
6秒前
拼搏亦松发布了新的文献求助10
6秒前
无花果应助hu970采纳,获得10
7秒前
kk2024应助今天真暖采纳,获得20
7秒前
Brandy完成签到,获得积分10
7秒前
春景当思完成签到,获得积分10
7秒前
lyon发布了新的文献求助10
7秒前
8秒前
背后的广山完成签到,获得积分10
8秒前
Jiancui发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672