New modified embedded-atom method interatomic potential to understand deformation behavior in VNbTaTiZr refractory high entropy alloy

原子间势 合金 材料科学 Atom(片上系统) 变形(气象学) 高熵合金 热力学 分子动力学 化学物理 冶金 化学 物理 计算化学 复合材料 计算机科学 嵌入式系统
作者
Mashroor S. Nitol,Marco Echeverria,Khanh Dang,M. I. Baskes,Saryu Fensin
出处
期刊:Computational Materials Science [Elsevier]
卷期号:237: 112886-112886 被引量:2
标识
DOI:10.1016/j.commatsci.2024.112886
摘要

High Entropy Alloys (HEAs) have attracted much interest over the past 20 years because of their remarkable mechanical properties. Recent works on BCC refractory HEAs have demonstrated high strength even at extreme temperatures with an unusual mix of strength and ductility. They also show excellent strain-hardening behavior. This study focuses on the VNbTaTiZr alloy, which stands out for its favorable qualities including relatively low density, impressive yield strength, and ductility at room temperature. To better understand the atomic behavior and microstructural features inherent to this alloy, a Modified Embedded Atom Method (MEAM) potential is developed, based on first-principles computations. Through accurate modeling of lattice constants, elastic constants, and formation enthalpies, a hybrid Molecular Dynamics/Monte Carlo (MD/MC) simulation of an equimolar VNbTaTiZr refractory HEA was performed to explore the role of local chemical compositions to its mechanical response. The current MEAM potential aligns closely with recent experimental work, validating its effectiveness. Adding Zr to the VNbTaTi alloy induces more lattice distortion, matching recent experimental observations. The potential also predicts that for RHEAs, deformation behavior is dominated by edge dislocations, unlike in pure BCC elements where screw dislocations prevail. Overall, this potential will be useful for unraveling the intricate atomic-level processes that give this alloy its remarkable mechanical performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
专注白昼应助hkh采纳,获得10
刚刚
别不开星完成签到,获得积分10
1秒前
虚拟的鞋垫完成签到,获得积分10
1秒前
gege发布了新的文献求助10
1秒前
1秒前
1秒前
科研炸巴发布了新的文献求助10
1秒前
2秒前
ZSH发布了新的文献求助10
3秒前
4秒前
4秒前
zzzwww发布了新的文献求助10
7秒前
kevindm发布了新的文献求助30
7秒前
7秒前
善良茗茗发布了新的文献求助10
8秒前
可爱的函函应助lhx采纳,获得10
8秒前
8秒前
yuzhou完成签到 ,获得积分10
9秒前
9秒前
逢强必赢完成签到,获得积分10
10秒前
科研通AI6应助xixi采纳,获得10
10秒前
12秒前
烟花应助zhaosibo020118采纳,获得10
12秒前
复方蛋酥卷完成签到,获得积分10
12秒前
六月歌者发布了新的文献求助20
12秒前
共享精神应助尼古拉斯采纳,获得10
13秒前
老迟到的尔白牛牛完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
14秒前
14秒前
阔达宝莹发布了新的文献求助10
15秒前
王海祥完成签到 ,获得积分10
16秒前
17秒前
18秒前
18秒前
李志豪发布了新的文献求助10
18秒前
高高碧发布了新的文献求助10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637553
求助须知:如何正确求助?哪些是违规求助? 4743563
关于积分的说明 14999628
捐赠科研通 4795653
什么是DOI,文献DOI怎么找? 2562146
邀请新用户注册赠送积分活动 1521595
关于科研通互助平台的介绍 1481573