New modified embedded-atom method interatomic potential to understand deformation behavior in VNbTaTiZr refractory high entropy alloy

原子间势 合金 材料科学 Atom(片上系统) 变形(气象学) 高熵合金 热力学 分子动力学 化学物理 冶金 化学 物理 计算化学 复合材料 计算机科学 嵌入式系统
作者
Mashroor S. Nitol,Marco Echeverria,Khanh Dang,M. I. Baskes,Saryu Fensin
出处
期刊:Computational Materials Science [Elsevier]
卷期号:237: 112886-112886 被引量:2
标识
DOI:10.1016/j.commatsci.2024.112886
摘要

High Entropy Alloys (HEAs) have attracted much interest over the past 20 years because of their remarkable mechanical properties. Recent works on BCC refractory HEAs have demonstrated high strength even at extreme temperatures with an unusual mix of strength and ductility. They also show excellent strain-hardening behavior. This study focuses on the VNbTaTiZr alloy, which stands out for its favorable qualities including relatively low density, impressive yield strength, and ductility at room temperature. To better understand the atomic behavior and microstructural features inherent to this alloy, a Modified Embedded Atom Method (MEAM) potential is developed, based on first-principles computations. Through accurate modeling of lattice constants, elastic constants, and formation enthalpies, a hybrid Molecular Dynamics/Monte Carlo (MD/MC) simulation of an equimolar VNbTaTiZr refractory HEA was performed to explore the role of local chemical compositions to its mechanical response. The current MEAM potential aligns closely with recent experimental work, validating its effectiveness. Adding Zr to the VNbTaTi alloy induces more lattice distortion, matching recent experimental observations. The potential also predicts that for RHEAs, deformation behavior is dominated by edge dislocations, unlike in pure BCC elements where screw dislocations prevail. Overall, this potential will be useful for unraveling the intricate atomic-level processes that give this alloy its remarkable mechanical performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zheshi1完成签到,获得积分10
2秒前
DrKe完成签到,获得积分10
5秒前
6秒前
我唉科研完成签到,获得积分10
11秒前
Owen应助科研通管家采纳,获得10
12秒前
英姑应助科研通管家采纳,获得10
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
打打应助科研通管家采纳,获得10
12秒前
小强完成签到 ,获得积分10
12秒前
乐乐应助科研通管家采纳,获得10
12秒前
orixero应助科研通管家采纳,获得10
12秒前
过儿过儿应助科研通管家采纳,获得10
12秒前
今后应助科研通管家采纳,获得10
12秒前
打打应助科研通管家采纳,获得10
12秒前
13秒前
13秒前
iNk应助科研通管家采纳,获得20
13秒前
13秒前
Yes0419完成签到,获得积分10
13秒前
英俊的铭应助科研通管家采纳,获得10
13秒前
Eric完成签到 ,获得积分10
14秒前
nini完成签到,获得积分10
14秒前
菜鸟队长完成签到 ,获得积分10
15秒前
Hello应助wangsuchen采纳,获得10
16秒前
像猫的狗完成签到 ,获得积分10
16秒前
17秒前
复杂的绮兰完成签到,获得积分10
17秒前
柳叶刀小猪应助永力采纳,获得10
18秒前
cgl155410完成签到 ,获得积分10
19秒前
努力看文献的大头完成签到,获得积分10
22秒前
空白完成签到,获得积分10
22秒前
清颜完成签到 ,获得积分10
23秒前
杨震完成签到 ,获得积分10
23秒前
23秒前
善学以致用应助liyutong采纳,获得10
24秒前
阳光凌青完成签到,获得积分10
29秒前
29秒前
科研通AI2S应助慈祥的翠桃采纳,获得10
31秒前
科研通AI2S应助慈祥的翠桃采纳,获得10
31秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242047
求助须知:如何正确求助?哪些是违规求助? 2886366
关于积分的说明 8243024
捐赠科研通 2555001
什么是DOI,文献DOI怎么找? 1383192
科研通“疑难数据库(出版商)”最低求助积分说明 649658
邀请新用户注册赠送积分活动 625417