Toward Robust Graph Semi-Supervised Learning Against Extreme Data Scarcity

计算机科学 图形 标记数据 稳健性(进化) 机器学习 半监督学习 人工智能 数据挖掘 理论计算机科学 生物化学 化学 基因
作者
Kaize Ding,Elnaz Nouri,Guo‐qing Zheng,Huan Liu,Ryen W. White
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (9): 11661-11670 被引量:3
标识
DOI:10.1109/tnnls.2024.3351938
摘要

The success of graph neural networks (GNNs) in graph-based web mining highly relies on abundant human-annotated data, which is laborious to obtain in practice. When only a few labeled nodes are available, how to improve their robustness is key to achieving replicable and sustainable graph semi-supervised learning. Though self-training is powerful for semi-supervised learning, its application on graph-structured data may fail because 1) larger receptive fields are not leveraged to capture long-range node interactions, which exacerbates the difficulty of propagating feature-label patterns from labeled nodes to unlabeled nodes and 2) limited labeled data makes it challenging to learn well-separated decision boundaries for different node classes without explicitly capturing the underlying semantic structure. To address the challenges of capturing informative structural and semantic knowledge, we propose a new graph data augmentation framework, augmented graph self-training (AGST), which is built with two new (i.e., structural and semantic) augmentation modules on top of a decoupled GST backbone. In this work, we investigate whether this novel framework can learn a robust graph predictive model under the low-data context. We conduct comprehensive evaluations on semi-supervised node classification under different scenarios of limited labeled-node data. The experimental results demonstrate the unique contributions of the novel data augmentation framework for node classification with few labeled data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
1秒前
科研通AI6应助搁浅采纳,获得10
2秒前
2秒前
沙瑞金发布了新的文献求助10
2秒前
里昂123发布了新的文献求助10
2秒前
2秒前
可爱的函函应助NEO采纳,获得10
3秒前
4秒前
lefcard发布了新的文献求助10
4秒前
4秒前
尔雅完成签到,获得积分10
5秒前
山海游轮发布了新的文献求助10
5秒前
jia0发布了新的文献求助10
5秒前
5秒前
站住辣条完成签到,获得积分10
5秒前
chelsea完成签到,获得积分10
6秒前
共享精神应助tsuki采纳,获得30
6秒前
betty发布了新的文献求助10
6秒前
IceyCNZ发布了新的文献求助10
6秒前
6秒前
向北游发布了新的文献求助20
7秒前
WTT发布了新的文献求助10
7秒前
小王同志完成签到,获得积分10
8秒前
8秒前
Hello应助GeneYang采纳,获得10
8秒前
超级盼海完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
称心元枫发布了新的文献求助10
9秒前
9秒前
李lj发布了新的文献求助10
10秒前
10秒前
10秒前
yangxt-iga发布了新的文献求助10
10秒前
沈雨琦完成签到,获得积分20
10秒前
站住辣条发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576530
求助须知:如何正确求助?哪些是违规求助? 3995739
关于积分的说明 12369777
捐赠科研通 3669687
什么是DOI,文献DOI怎么找? 2022376
邀请新用户注册赠送积分活动 1056390
科研通“疑难数据库(出版商)”最低求助积分说明 943637