Toward Robust Graph Semi-Supervised Learning Against Extreme Data Scarcity

计算机科学 图形 标记数据 稳健性(进化) 机器学习 半监督学习 人工智能 数据挖掘 理论计算机科学 生物化学 基因 化学
作者
Kaize Ding,Elnaz Nouri,Guo‐qing Zheng,Huan Liu,Ryen W. White
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (9): 11661-11670 被引量:3
标识
DOI:10.1109/tnnls.2024.3351938
摘要

The success of graph neural networks (GNNs) in graph-based web mining highly relies on abundant human-annotated data, which is laborious to obtain in practice. When only a few labeled nodes are available, how to improve their robustness is key to achieving replicable and sustainable graph semi-supervised learning. Though self-training is powerful for semi-supervised learning, its application on graph-structured data may fail because 1) larger receptive fields are not leveraged to capture long-range node interactions, which exacerbates the difficulty of propagating feature-label patterns from labeled nodes to unlabeled nodes and 2) limited labeled data makes it challenging to learn well-separated decision boundaries for different node classes without explicitly capturing the underlying semantic structure. To address the challenges of capturing informative structural and semantic knowledge, we propose a new graph data augmentation framework, augmented graph self-training (AGST), which is built with two new (i.e., structural and semantic) augmentation modules on top of a decoupled GST backbone. In this work, we investigate whether this novel framework can learn a robust graph predictive model under the low-data context. We conduct comprehensive evaluations on semi-supervised node classification under different scenarios of limited labeled-node data. The experimental results demonstrate the unique contributions of the novel data augmentation framework for node classification with few labeled data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xx发布了新的文献求助40
刚刚
1秒前
1秒前
2秒前
小蘑菇应助廖念采纳,获得10
4秒前
6秒前
苏苏发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
8秒前
平常寒烟完成签到,获得积分10
8秒前
123456完成签到 ,获得积分10
8秒前
科研笨男人完成签到,获得积分10
9秒前
9秒前
芍药完成签到 ,获得积分10
10秒前
11秒前
20发布了新的文献求助10
12秒前
闻风听雨发布了新的文献求助10
13秒前
Xx完成签到,获得积分10
13秒前
14秒前
15秒前
笛九完成签到 ,获得积分10
15秒前
17秒前
万能图书馆应助诗意采纳,获得10
18秒前
VV完成签到,获得积分10
21秒前
隆龙完成签到,获得积分10
21秒前
Jiatong7完成签到,获得积分10
21秒前
leaolf应助科研通管家采纳,获得10
23秒前
科目三应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
研友_VZG7GZ应助科研通管家采纳,获得10
23秒前
fendy应助科研通管家采纳,获得50
23秒前
浮游应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
ding应助科研通管家采纳,获得10
24秒前
汉堡包应助科研通管家采纳,获得10
24秒前
LaTeXer应助科研通管家采纳,获得100
24秒前
星辰大海应助科研通管家采纳,获得10
24秒前
bkagyin应助科研通管家采纳,获得10
24秒前
Jasper应助科研通管家采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911831
求助须知:如何正确求助?哪些是违规求助? 4187185
关于积分的说明 13003332
捐赠科研通 3955152
什么是DOI,文献DOI怎么找? 2168569
邀请新用户注册赠送积分活动 1187064
关于科研通互助平台的介绍 1094301