Toward Robust Graph Semi-Supervised Learning Against Extreme Data Scarcity

计算机科学 图形 标记数据 稳健性(进化) 机器学习 半监督学习 人工智能 数据挖掘 理论计算机科学 生物化学 基因 化学
作者
Kaize Ding,Elnaz Nouri,Guo‐qing Zheng,Huan Liu,Ryen W. White
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (9): 11661-11670 被引量:3
标识
DOI:10.1109/tnnls.2024.3351938
摘要

The success of graph neural networks (GNNs) in graph-based web mining highly relies on abundant human-annotated data, which is laborious to obtain in practice. When only a few labeled nodes are available, how to improve their robustness is key to achieving replicable and sustainable graph semi-supervised learning. Though self-training is powerful for semi-supervised learning, its application on graph-structured data may fail because 1) larger receptive fields are not leveraged to capture long-range node interactions, which exacerbates the difficulty of propagating feature-label patterns from labeled nodes to unlabeled nodes and 2) limited labeled data makes it challenging to learn well-separated decision boundaries for different node classes without explicitly capturing the underlying semantic structure. To address the challenges of capturing informative structural and semantic knowledge, we propose a new graph data augmentation framework, augmented graph self-training (AGST), which is built with two new (i.e., structural and semantic) augmentation modules on top of a decoupled GST backbone. In this work, we investigate whether this novel framework can learn a robust graph predictive model under the low-data context. We conduct comprehensive evaluations on semi-supervised node classification under different scenarios of limited labeled-node data. The experimental results demonstrate the unique contributions of the novel data augmentation framework for node classification with few labeled data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助派提克采纳,获得10
刚刚
流星完成签到,获得积分10
1秒前
小AB发布了新的文献求助10
1秒前
2秒前
Huang_Liuying发布了新的文献求助30
3秒前
世界末末日完成签到,获得积分10
3秒前
馒头完成签到,获得积分10
3秒前
szh123发布了新的文献求助10
3秒前
zuo完成签到,获得积分10
3秒前
跳跳糖完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
裴果完成签到,获得积分10
4秒前
明亮依波完成签到,获得积分10
4秒前
Jasper应助狗蛋采纳,获得10
4秒前
麻薯麻薯发布了新的文献求助10
4秒前
深情安青应助陆柒子采纳,获得10
4秒前
lhhhh完成签到,获得积分10
5秒前
布丁应助ying采纳,获得10
6秒前
浮游应助ying采纳,获得10
6秒前
6秒前
6秒前
iNk应助淡然柚子采纳,获得10
6秒前
will发布了新的文献求助10
6秒前
宇文青寒发布了新的文献求助20
7秒前
赘婿应助海豚的盆友采纳,获得10
7秒前
明亮的藏花完成签到,获得积分10
7秒前
土豆子关注了科研通微信公众号
7秒前
酷波er应助JAU采纳,获得10
8秒前
阿湫发布了新的文献求助10
8秒前
FashionBoy应助楚昕越采纳,获得50
8秒前
幽默的老虎应助kmkz采纳,获得10
8秒前
安静一曲完成签到 ,获得积分10
8秒前
8秒前
FashionBoy应助朝茗森采纳,获得10
8秒前
9秒前
拼搏煎蛋发布了新的文献求助10
9秒前
小文殊发布了新的文献求助10
9秒前
NameSL发布了新的文献求助10
9秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5119112
求助须知:如何正确求助?哪些是违规求助? 4324929
关于积分的说明 13474611
捐赠科研通 4158140
什么是DOI,文献DOI怎么找? 2278807
邀请新用户注册赠送积分活动 1280560
关于科研通互助平台的介绍 1219303