机制(生物学)
弹道
计算机科学
人工智能
物理
天文
量子力学
作者
Jian Cen,JiaXi Li,Xi Liu,Jiahao Chen,Haisheng Li,WeiSheng Huang,LinZhe Zeng,JunXi Kang,Silin Ke
标识
DOI:10.1177/14750902231226162
摘要
With the increase in global shipping volumes and the complexity of maritime transport systems, vessel trajectory prediction serves an important tool in improving maritime safety. However, most existing vessel trajectory prediction methods focus on a single feature and unable fuse high-dimensional features. To solve these problems, CNN-GRU model with a hybrid attention mechanism (AM) is proposed based on Automatic Identification System (AIS) data. First convolutional neural network (CNN) is proposed to extract the spatio-temporal information of the trajectory data. Then a gated recurrent unit (GRU) is designed to extract the temporal relationship of the trajectories. Finally, AM is introduced to learn the deep-level features and predict the vessel trajectories. To validate the effectiveness of the model, experiments are conducted on three real AIS datasets. In comparison with other models, the method has a high trajectory prediction accuracy.
科研通智能强力驱动
Strongly Powered by AbleSci AI