亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Cross-Scenario Device-Free Gesture Recognition Based On Parallel Adversarial Network

计算机科学 手势 相似性(几何) 保险丝(电气) 无线 钥匙(锁) 对抗制 无线网络 人工智能 特征提取 手势识别 深度学习 特征(语言学) 机器学习 电信 语言学 哲学 计算机安全 电气工程 图像(数学) 工程类
作者
Jie Wang,Shenzhou Zhao,Yingying Lv,Xiaokai Liu,Qinghua Gao,Miao Pan
出处
期刊:IEEE Transactions on Cognitive Communications and Networking [Institute of Electrical and Electronics Engineers]
卷期号:10 (3): 893-904 被引量:1
标识
DOI:10.1109/tccn.2023.3345869
摘要

Wireless sensing has garnered significant attention as a key technique for 6G, as it empowers wireless networks with sensing capabilities. One emerging technology in this domain is device-free gesture recognition (DFGR), which enables the recognition of human gestures by analyzing the influence they exert on the surrounding wireless signals. Deep network based DFGR systems have demonstrated impressive performance thanks to the feature extraction capabilities of deep networks. However, these systems encounter significant performance degradation in cross-scenario conditions, wherein it becomes challenging, and sometimes even impossible, to extract common features that are unrelated to specific working scenarios, particularly when there are substantial differences among the scenarios. To solve this problem, in this paper, we propose and design a parallel adversarial network. Our key idea is to extract common features between the target scenario and each source scenario separately and parallelly, so that we can achieve common features even when the difference between the scenarios is quite large. Specifically, we design adversarial sub-networks for each pair of target and source scenarios to extract their common features and make coarse recognition, develop a similarity evaluation sub-network to estimate the similarity between the target scenario and every source scenario, and fuse the coarse results by leveraging similarity scores to accomplish accurate recognition. We conducted extensive evaluations on two mmWave testbeds and the publicly available Widar3.0 WiFi dataset, and confirmed the effectiveness of the proposed network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
50秒前
Orange应助曹燃采纳,获得10
59秒前
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
月光奏鸣曲完成签到,获得积分10
1分钟前
无花果应助禹山河采纳,获得10
2分钟前
激动的似狮完成签到,获得积分10
2分钟前
gszy1975完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
哭泣海雪完成签到 ,获得积分10
2分钟前
2分钟前
免我蹉跎苦完成签到,获得积分20
2分钟前
2分钟前
机灵水卉完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
大模型应助更明采纳,获得10
3分钟前
3分钟前
VAE完成签到,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
博博完成签到,获得积分10
4分钟前
钢钢完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
曹燃发布了新的文献求助10
4分钟前
甜甜的紫菜完成签到 ,获得积分10
4分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
5分钟前
心灵美凝竹完成签到 ,获得积分10
5分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960125
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128619
捐赠科研通 3238289
什么是DOI,文献DOI怎么找? 1789684
邀请新用户注册赠送积分活动 871846
科研通“疑难数据库(出版商)”最低求助积分说明 803069