Cross-Scenario Device-Free Gesture Recognition Based On Parallel Adversarial Network

计算机科学 手势 相似性(几何) 保险丝(电气) 无线 钥匙(锁) 对抗制 无线网络 人工智能 特征提取 手势识别 深度学习 特征(语言学) 机器学习 电信 语言学 哲学 计算机安全 电气工程 图像(数学) 工程类
作者
Jie Wang,Shenzhou Zhao,Yingying Lv,Xiaokai Liu,Qinghua Gao,Miao Pan
出处
期刊:IEEE Transactions on Cognitive Communications and Networking [Institute of Electrical and Electronics Engineers]
卷期号:10 (3): 893-904 被引量:1
标识
DOI:10.1109/tccn.2023.3345869
摘要

Wireless sensing has garnered significant attention as a key technique for 6G, as it empowers wireless networks with sensing capabilities. One emerging technology in this domain is device-free gesture recognition (DFGR), which enables the recognition of human gestures by analyzing the influence they exert on the surrounding wireless signals. Deep network based DFGR systems have demonstrated impressive performance thanks to the feature extraction capabilities of deep networks. However, these systems encounter significant performance degradation in cross-scenario conditions, wherein it becomes challenging, and sometimes even impossible, to extract common features that are unrelated to specific working scenarios, particularly when there are substantial differences among the scenarios. To solve this problem, in this paper, we propose and design a parallel adversarial network. Our key idea is to extract common features between the target scenario and each source scenario separately and parallelly, so that we can achieve common features even when the difference between the scenarios is quite large. Specifically, we design adversarial sub-networks for each pair of target and source scenarios to extract their common features and make coarse recognition, develop a similarity evaluation sub-network to estimate the similarity between the target scenario and every source scenario, and fuse the coarse results by leveraging similarity scores to accomplish accurate recognition. We conducted extensive evaluations on two mmWave testbeds and the publicly available Widar3.0 WiFi dataset, and confirmed the effectiveness of the proposed network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lauren完成签到 ,获得积分10
刚刚
刚刚
1秒前
lwl666发布了新的文献求助10
2秒前
莫茹发布了新的文献求助10
2秒前
Jie发布了新的文献求助10
3秒前
zlx完成签到 ,获得积分10
4秒前
DQ发布了新的文献求助10
4秒前
4秒前
陶军辉完成签到 ,获得积分10
5秒前
Jasper应助莫茹采纳,获得10
7秒前
10秒前
yyy_完成签到,获得积分20
10秒前
田様应助hhhhhh采纳,获得10
11秒前
12秒前
15秒前
15秒前
yiyimx发布了新的文献求助10
16秒前
英姑应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
1+1应助科研通管家采纳,获得10
18秒前
行走家应助科研通管家采纳,获得10
18秒前
喜悦成威应助科研通管家采纳,获得10
18秒前
所所应助科研通管家采纳,获得10
18秒前
大模型应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
jwx应助科研通管家采纳,获得10
18秒前
1+1应助科研通管家采纳,获得10
18秒前
852应助科研通管家采纳,获得10
18秒前
HEIKU应助科研通管家采纳,获得10
19秒前
yz应助科研通管家采纳,获得10
19秒前
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
1+1应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得30
19秒前
隐形曼青应助科研通管家采纳,获得20
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
orixero应助科研通管家采纳,获得10
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671625
求助须知:如何正确求助?哪些是违规求助? 3228325
关于积分的说明 9779625
捐赠科研通 2938636
什么是DOI,文献DOI怎么找? 1610180
邀请新用户注册赠送积分活动 760547
科研通“疑难数据库(出版商)”最低求助积分说明 736093