Cross-Scenario Device-Free Gesture Recognition Based On Parallel Adversarial Network

计算机科学 手势 相似性(几何) 保险丝(电气) 无线 钥匙(锁) 对抗制 无线网络 人工智能 特征提取 手势识别 深度学习 特征(语言学) 机器学习 电信 工程类 哲学 电气工程 图像(数学) 语言学 计算机安全
作者
Jie Wang,Shenzhou Zhao,Yingying Lv,Xiaokai Liu,Qinghua Gao,Miao Pan
出处
期刊:IEEE Transactions on Cognitive Communications and Networking [Institute of Electrical and Electronics Engineers]
卷期号:10 (3): 893-904 被引量:1
标识
DOI:10.1109/tccn.2023.3345869
摘要

Wireless sensing has garnered significant attention as a key technique for 6G, as it empowers wireless networks with sensing capabilities. One emerging technology in this domain is device-free gesture recognition (DFGR), which enables the recognition of human gestures by analyzing the influence they exert on the surrounding wireless signals. Deep network based DFGR systems have demonstrated impressive performance thanks to the feature extraction capabilities of deep networks. However, these systems encounter significant performance degradation in cross-scenario conditions, wherein it becomes challenging, and sometimes even impossible, to extract common features that are unrelated to specific working scenarios, particularly when there are substantial differences among the scenarios. To solve this problem, in this paper, we propose and design a parallel adversarial network. Our key idea is to extract common features between the target scenario and each source scenario separately and parallelly, so that we can achieve common features even when the difference between the scenarios is quite large. Specifically, we design adversarial sub-networks for each pair of target and source scenarios to extract their common features and make coarse recognition, develop a similarity evaluation sub-network to estimate the similarity between the target scenario and every source scenario, and fuse the coarse results by leveraging similarity scores to accomplish accurate recognition. We conducted extensive evaluations on two mmWave testbeds and the publicly available Widar3.0 WiFi dataset, and confirmed the effectiveness of the proposed network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17ss完成签到,获得积分10
刚刚
刚刚
yehuitao发布了新的文献求助10
刚刚
FashionBoy应助雾山行采纳,获得10
刚刚
Hammerdai发布了新的文献求助10
刚刚
Morgen发布了新的文献求助10
1秒前
Pjmeng完成签到,获得积分10
1秒前
Captain完成签到 ,获得积分10
1秒前
芋圆完成签到,获得积分10
2秒前
余儿完成签到,获得积分10
3秒前
3秒前
3秒前
无花果应助温婉的勒采纳,获得10
4秒前
4秒前
冷傲的xu完成签到,获得积分10
4秒前
哎嘤斯坦完成签到,获得积分10
4秒前
5秒前
周雨婷发布了新的文献求助20
6秒前
you完成签到,获得积分10
6秒前
7秒前
丘比特应助阿媛呐采纳,获得10
7秒前
9秒前
体贴寒烟发布了新的文献求助10
9秒前
英姑应助明理采珊采纳,获得10
9秒前
ccfairy发布了新的文献求助10
9秒前
冷静的笑寒-晴天完成签到,获得积分10
9秒前
10秒前
10秒前
欣欣给欣欣的求助进行了留言
10秒前
11秒前
曦光完成签到,获得积分20
11秒前
香蕉觅云应助可可萝oxo采纳,获得10
11秒前
星辰大海应助看文献的狗采纳,获得10
11秒前
12秒前
打打应助daheeeee采纳,获得10
12秒前
12秒前
wy.he应助jzy采纳,获得10
12秒前
19发布了新的文献求助10
12秒前
12秒前
LL完成签到,获得积分10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3296524
求助须知:如何正确求助?哪些是违规求助? 2932367
关于积分的说明 8456236
捐赠科研通 2604886
什么是DOI,文献DOI怎么找? 1422043
科研通“疑难数据库(出版商)”最低求助积分说明 661269
邀请新用户注册赠送积分活动 644326