Cross-Scenario Device-Free Gesture Recognition Based On Parallel Adversarial Network

计算机科学 手势 相似性(几何) 保险丝(电气) 无线 钥匙(锁) 对抗制 无线网络 人工智能 特征提取 手势识别 深度学习 特征(语言学) 机器学习 电信 语言学 哲学 计算机安全 电气工程 图像(数学) 工程类
作者
Jie Wang,Shenzhou Zhao,Yingying Lv,Xiaokai Liu,Qinghua Gao,Miao Pan
出处
期刊:IEEE Transactions on Cognitive Communications and Networking [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tccn.2023.3345869
摘要

Wireless sensing has garnered significant attention as a key technique for 6G, as it empowers wireless networks with sensing capabilities. One emerging technology in this domain is device-free gesture recognition (DFGR), which enables the recognition of human gestures by analyzing the influence they exert on the surrounding wireless signals. Deep network based DFGR systems have demonstrated impressive performance thanks to the feature extraction capabilities of deep networks. However, these systems encounter significant performance degradation in cross-scenario conditions, wherein it becomes challenging, and sometimes even impossible, to extract common features that are unrelated to specific working scenarios, particularly when there are substantial differences among the scenarios. To solve this problem, in this paper, we propose and design a parallel adversarial network. Our key idea is to extract common features between the target scenario and each source scenario separately and parallelly, so that we can achieve common features even when the difference between the scenarios is quite large. Specifically, we design adversarial sub-networks for each pair of target and source scenarios to extract their common features and make coarse recognition, develop a similarity evaluation sub-network to estimate the similarity between the target scenario and every source scenario, and fuse the coarse results by leveraging similarity scores to accomplish accurate recognition. We conducted extensive evaluations on two mmWave testbeds and the publicly available Widar3.0 WiFi dataset, and confirmed the effectiveness of the proposed network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洁净伟祺发布了新的文献求助10
刚刚
大方的若山应助congcong采纳,获得10
1秒前
2秒前
烟花应助Dengli采纳,获得30
3秒前
学术废物完成签到 ,获得积分10
4秒前
5秒前
比目发布了新的文献求助30
7秒前
congcong完成签到 ,获得积分10
9秒前
哈哈完成签到,获得积分10
12秒前
耿继生发布了新的文献求助10
12秒前
Su完成签到,获得积分10
14秒前
风趣的如娆完成签到,获得积分10
15秒前
科目三应助Yolen LI采纳,获得10
19秒前
耿继生完成签到,获得积分10
20秒前
自由的刺猬完成签到,获得积分10
20秒前
20秒前
20秒前
LeuinPonsgi应助科研通管家采纳,获得10
20秒前
我是老大应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
压缩应助科研通管家采纳,获得10
21秒前
研友_VZG7GZ应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
21秒前
22秒前
高挑的不凡完成签到,获得积分10
22秒前
min17完成签到,获得积分10
23秒前
陈荣发布了新的文献求助10
24秒前
Ava应助LGuy采纳,获得10
25秒前
学术大白完成签到,获得积分10
25秒前
小台农完成签到,获得积分20
26秒前
congcong完成签到,获得积分10
27秒前
27秒前
30秒前
lsw发布了新的文献求助10
33秒前
aa发布了新的文献求助10
34秒前
Ava应助min17采纳,获得10
36秒前
比目完成签到,获得积分10
37秒前
CipherSage应助cookie采纳,获得10
38秒前
纷飞应助落后寒凡采纳,获得10
40秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
高温高压条件下金刚石内部缺陷的形成机制及调控 310
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3060611
求助须知:如何正确求助?哪些是违规求助? 2716064
关于积分的说明 7447978
捐赠科研通 2361978
什么是DOI,文献DOI怎么找? 1251726
科研通“疑难数据库(出版商)”最低求助积分说明 607853
版权声明 596515