已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

AEKD: Unsupervised auto-encoder knowledge distillation for industrial anomaly detection

异常检测 一般化 编码器 蒸馏 异常(物理) 特征(语言学) 计算机科学 人工智能 模式识别(心理学) 数据挖掘 数学 化学 物理 凝聚态物理 数学分析 语言学 哲学 有机化学 操作系统
作者
Qiangwei Wu,Hui Li,Chenyu Tian,Long Wen,Xinyu Li
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:73: 159-169 被引量:11
标识
DOI:10.1016/j.jmsy.2024.02.001
摘要

Unsupervised Anomaly Detection (UAD) has achieved promising results in industrial Surface Defect Detection. Knowledge-Distillation (KD) based UAD became a hotspot due to its simple structure and convincing detection results. However, the generalization issue of the similarity between Student (S) and Teacher (T) models in KD hinders the accuracy. KD based UAD is based on the feature differences between the T and S models, and the similar feature expressions of the T and S models would lead to the failure detection on the anomalous images. To cope with this issue, a new Unsupervised Auto-Encoder Knowledge Distillation (AEKD) is developed to accurately detect anomalies and the locate anomalous regions. AEKD uses the encoder as T model and the AE structure as S model. The structural differences between T-S models can effectively suppress the generalization issue. Firstly, a new S model structure is proposed to strengthen the structure difference of T-S model. Secondly, a trainable Multi-scale Features Fusion module is introduced to reduce anomaly disturbance. Thirdly, the different data flow of T and S model is designed to reinforce the different expression in T and S model to anomalies. AEKD has been conducted on the public MVTec, DAGM dataset and a real-world glass bottle dataset. The results validate that AEKD has achieved the excellent results by comparing with other famous UAD methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
digger2023完成签到 ,获得积分10
刚刚
shame完成签到 ,获得积分10
1秒前
FashionBoy应助丹布里采纳,获得10
1秒前
2秒前
2秒前
shweah2003完成签到,获得积分0
2秒前
任性大米完成签到 ,获得积分10
4秒前
handsomelin发布了新的文献求助10
6秒前
coke完成签到,获得积分20
6秒前
7秒前
哈哈完成签到 ,获得积分10
7秒前
8秒前
戈屿完成签到 ,获得积分10
8秒前
TRISTE完成签到 ,获得积分10
8秒前
陆碌路完成签到,获得积分10
8秒前
布可完成签到,获得积分10
9秒前
Zhang发布了新的文献求助10
9秒前
9秒前
wyy完成签到,获得积分10
10秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
FIN应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
zyf发布了新的文献求助10
12秒前
handsomelin完成签到,获得积分10
12秒前
涂楚捷发布了新的文献求助10
13秒前
WGS完成签到,获得积分10
14秒前
懦弱的安珊发布了新的文献求助100
14秒前
默默雪旋完成签到 ,获得积分10
15秒前
123完成签到 ,获得积分10
16秒前
木又完成签到 ,获得积分10
17秒前
不开心就吃糖完成签到 ,获得积分10
18秒前
嘻嘻完成签到 ,获得积分10
18秒前
kai chen完成签到 ,获得积分0
18秒前
清脆的飞丹完成签到,获得积分10
22秒前
xiaoya完成签到,获得积分20
23秒前
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959930
求助须知:如何正确求助?哪些是违规求助? 3506191
关于积分的说明 11128233
捐赠科研通 3238160
什么是DOI,文献DOI怎么找? 1789535
邀请新用户注册赠送积分活动 871810
科研通“疑难数据库(出版商)”最低求助积分说明 803024