AEKD: Unsupervised auto-encoder knowledge distillation for industrial anomaly detection

异常检测 一般化 编码器 蒸馏 异常(物理) 特征(语言学) 计算机科学 人工智能 模式识别(心理学) 数据挖掘 数学 化学 物理 凝聚态物理 数学分析 语言学 哲学 有机化学 操作系统
作者
Qiangwei Wu,Hui Li,Chenyu Tian,Long Wen,Xinyu Li
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:73: 159-169 被引量:7
标识
DOI:10.1016/j.jmsy.2024.02.001
摘要

Unsupervised Anomaly Detection (UAD) has achieved promising results in industrial Surface Defect Detection. Knowledge-Distillation (KD) based UAD became a hotspot due to its simple structure and convincing detection results. However, the generalization issue of the similarity between Student (S) and Teacher (T) models in KD hinders the accuracy. KD based UAD is based on the feature differences between the T and S models, and the similar feature expressions of the T and S models would lead to the failure detection on the anomalous images. To cope with this issue, a new Unsupervised Auto-Encoder Knowledge Distillation (AEKD) is developed to accurately detect anomalies and the locate anomalous regions. AEKD uses the encoder as T model and the AE structure as S model. The structural differences between T-S models can effectively suppress the generalization issue. Firstly, a new S model structure is proposed to strengthen the structure difference of T-S model. Secondly, a trainable Multi-scale Features Fusion module is introduced to reduce anomaly disturbance. Thirdly, the different data flow of T and S model is designed to reinforce the different expression in T and S model to anomalies. AEKD has been conducted on the public MVTec, DAGM dataset and a real-world glass bottle dataset. The results validate that AEKD has achieved the excellent results by comparing with other famous UAD methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
脑洞疼应助zyz1998采纳,获得10
1秒前
嘻嘻哈哈完成签到 ,获得积分10
1秒前
qiqiqiqiqi完成签到 ,获得积分10
3秒前
4秒前
WEN关闭了WEN文献求助
4秒前
wang完成签到 ,获得积分10
5秒前
6秒前
哲痞子完成签到,获得积分10
7秒前
清心淡如水完成签到,获得积分10
8秒前
11秒前
13秒前
zixian发布了新的文献求助10
13秒前
Jasper应助蔺子凡采纳,获得10
15秒前
15秒前
张琦发布了新的文献求助10
16秒前
爱吃果果的泡泡完成签到,获得积分10
16秒前
卓头OvQ发布了新的文献求助10
17秒前
18秒前
仁爱的雁芙完成签到,获得积分10
18秒前
lzs发布了新的文献求助10
20秒前
科研通AI5应助zpw123采纳,获得10
20秒前
Becca发布了新的文献求助10
20秒前
21秒前
搜集达人应助niu采纳,获得10
22秒前
Akim应助冷艳贵公子王少采纳,获得10
25秒前
科研通AI5应助Becca采纳,获得10
26秒前
27秒前
27秒前
28秒前
123完成签到,获得积分10
28秒前
酷波er应助lyx采纳,获得10
28秒前
zylyl发布了新的文献求助10
30秒前
脑洞疼应助秦宇采纳,获得10
32秒前
33秒前
33秒前
传奇3应助如意凝雁采纳,获得10
34秒前
34秒前
蔺子凡发布了新的文献求助10
35秒前
36秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1250
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
APA educational psychology handbook, Vol 1: Theories, constructs, and critical issues 700
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3651973
求助须知:如何正确求助?哪些是违规求助? 3216162
关于积分的说明 9711019
捐赠科研通 2923965
什么是DOI,文献DOI怎么找? 1601432
邀请新用户注册赠送积分活动 754160
科研通“疑难数据库(出版商)”最低求助积分说明 732987