亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

AEKD: Unsupervised auto-encoder knowledge distillation for industrial anomaly detection

异常检测 一般化 编码器 蒸馏 异常(物理) 特征(语言学) 计算机科学 人工智能 模式识别(心理学) 数据挖掘 数学 化学 物理 操作系统 语言学 数学分析 哲学 有机化学 凝聚态物理
作者
Qiangwei Wu,Hui Li,Chenyu Tian,Long Wen,Xinyu Li
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:73: 159-169 被引量:26
标识
DOI:10.1016/j.jmsy.2024.02.001
摘要

Unsupervised Anomaly Detection (UAD) has achieved promising results in industrial Surface Defect Detection. Knowledge-Distillation (KD) based UAD became a hotspot due to its simple structure and convincing detection results. However, the generalization issue of the similarity between Student (S) and Teacher (T) models in KD hinders the accuracy. KD based UAD is based on the feature differences between the T and S models, and the similar feature expressions of the T and S models would lead to the failure detection on the anomalous images. To cope with this issue, a new Unsupervised Auto-Encoder Knowledge Distillation (AEKD) is developed to accurately detect anomalies and the locate anomalous regions. AEKD uses the encoder as T model and the AE structure as S model. The structural differences between T-S models can effectively suppress the generalization issue. Firstly, a new S model structure is proposed to strengthen the structure difference of T-S model. Secondly, a trainable Multi-scale Features Fusion module is introduced to reduce anomaly disturbance. Thirdly, the different data flow of T and S model is designed to reinforce the different expression in T and S model to anomalies. AEKD has been conducted on the public MVTec, DAGM dataset and a real-world glass bottle dataset. The results validate that AEKD has achieved the excellent results by comparing with other famous UAD methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
doctor2023发布了新的文献求助10
7秒前
9秒前
Felix0929发布了新的文献求助10
13秒前
阿宇发布了新的文献求助10
36秒前
小蘑菇应助LeezZZZ采纳,获得10
45秒前
PYF完成签到,获得积分10
45秒前
绒绒完成签到,获得积分10
46秒前
48秒前
51秒前
lolin741发布了新的文献求助10
54秒前
chen完成签到 ,获得积分10
1分钟前
莫名乐乐完成签到,获得积分10
1分钟前
绿柏完成签到,获得积分10
1分钟前
1分钟前
1分钟前
kl完成签到,获得积分10
1分钟前
LeezZZZ发布了新的文献求助10
1分钟前
1分钟前
研友_VZG7GZ应助LeezZZZ采纳,获得10
1分钟前
1分钟前
LeezZZZ发布了新的文献求助10
1分钟前
1分钟前
1分钟前
桐桐应助LeezZZZ采纳,获得10
1分钟前
1分钟前
1分钟前
bitman发布了新的文献求助10
1分钟前
1分钟前
长小右发布了新的文献求助10
1分钟前
LeezZZZ发布了新的文献求助10
1分钟前
苗条的擎苍完成签到 ,获得积分10
1分钟前
完美世界应助LeezZZZ采纳,获得10
1分钟前
2分钟前
JamesPei应助MelonZ采纳,获得30
2分钟前
xumengsuo完成签到,获得积分10
2分钟前
felix发布了新的文献求助10
2分钟前
felix发布了新的文献求助10
2分钟前
felix发布了新的文献求助10
2分钟前
大模型应助bitman采纳,获得10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603266
求助须知:如何正确求助?哪些是违规求助? 4688354
关于积分的说明 14853288
捐赠科研通 4688706
什么是DOI,文献DOI怎么找? 2540535
邀请新用户注册赠送积分活动 1506982
关于科研通互助平台的介绍 1471543