AEKD: Unsupervised auto-encoder knowledge distillation for industrial anomaly detection

异常检测 一般化 编码器 蒸馏 异常(物理) 特征(语言学) 计算机科学 人工智能 模式识别(心理学) 数据挖掘 数学 化学 物理 操作系统 语言学 数学分析 哲学 有机化学 凝聚态物理
作者
Qiangwei Wu,Hui Li,Chenyu Tian,Long Wen,Xinyu Li
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:73: 159-169 被引量:11
标识
DOI:10.1016/j.jmsy.2024.02.001
摘要

Unsupervised Anomaly Detection (UAD) has achieved promising results in industrial Surface Defect Detection. Knowledge-Distillation (KD) based UAD became a hotspot due to its simple structure and convincing detection results. However, the generalization issue of the similarity between Student (S) and Teacher (T) models in KD hinders the accuracy. KD based UAD is based on the feature differences between the T and S models, and the similar feature expressions of the T and S models would lead to the failure detection on the anomalous images. To cope with this issue, a new Unsupervised Auto-Encoder Knowledge Distillation (AEKD) is developed to accurately detect anomalies and the locate anomalous regions. AEKD uses the encoder as T model and the AE structure as S model. The structural differences between T-S models can effectively suppress the generalization issue. Firstly, a new S model structure is proposed to strengthen the structure difference of T-S model. Secondly, a trainable Multi-scale Features Fusion module is introduced to reduce anomaly disturbance. Thirdly, the different data flow of T and S model is designed to reinforce the different expression in T and S model to anomalies. AEKD has been conducted on the public MVTec, DAGM dataset and a real-world glass bottle dataset. The results validate that AEKD has achieved the excellent results by comparing with other famous UAD methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助stan采纳,获得10
1秒前
ZQD发布了新的文献求助10
1秒前
一点不懂发布了新的文献求助20
2秒前
今后应助yqhide采纳,获得10
2秒前
Y哦莫哦莫完成签到,获得积分10
2秒前
彭于晏应助隐形霸采纳,获得10
2秒前
薰衣草发布了新的文献求助10
3秒前
polki完成签到,获得积分10
3秒前
搜集达人应助百甲采纳,获得10
4秒前
sky发布了新的文献求助10
4秒前
浮游应助myc采纳,获得10
5秒前
5秒前
29发布了新的文献求助10
5秒前
5秒前
7秒前
捏个小雪团完成签到 ,获得积分10
8秒前
啦啦啦完成签到,获得积分10
9秒前
10秒前
yyygc完成签到,获得积分10
10秒前
10秒前
11秒前
搞怪灯泡完成签到,获得积分10
11秒前
顾矜应助三百一十四采纳,获得10
11秒前
12秒前
畅快的文龙完成签到,获得积分10
12秒前
温水完成签到 ,获得积分10
12秒前
12秒前
lanming发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
阿湫发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
CT民工完成签到,获得积分10
16秒前
17秒前
树袋熊和考拉完成签到,获得积分10
17秒前
完美世界应助myn1990采纳,获得10
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5109721
求助须知:如何正确求助?哪些是违规求助? 4318341
关于积分的说明 13454127
捐赠科研通 4148336
什么是DOI,文献DOI怎么找? 2273150
邀请新用户注册赠送积分活动 1275295
关于科研通互助平台的介绍 1213562