DCTN: Dual-Branch Convolutional Transformer Network With Efficient Interactive Self-Attention for Hyperspectral Image Classification

高光谱成像 计算机科学 卷积神经网络 特征提取 人工智能 模式识别(心理学)
作者
Yunfei Zhou,Xiaohui Huang,Xiaofei Yang,Jiangtao Peng,Yifang Ban
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-16 被引量:10
标识
DOI:10.1109/tgrs.2024.3364143
摘要

Hyperspectral image (HSI) classification is an essential task in remote sensing with substantial practical significance. However, most existing convolutional neural network (CNN)-based classification methods focus only on local spatial features while neglecting global spectral dependencies. Meanwhile, Transformer-based methods exhibit robust capabilities for global spectral feature modeling but struggle to extract local spatial features effectively. To fully exploit the local spatial feature extraction capabilities of CNN-based networks and the global spectral feature extraction capabilities of Transformer-based networks, this paper proposes a dual-branch convolutional Transformer method with efficient interactive self-attention for hyperspectral image classification, namely the dual-branch convolutional Transformer network (DCTN), which can aggregate local and global spatial-spectral features fully. Specifically, DCTN includes two core modules: the spatial-spectral fusion projection module and the efficient interactive self-attention module. The former utilizes 3D convolution with adaptive pooling and 2D group convolution with residual connection to parallel extract fused and grouped spatial-spectral features, respectively. The latter performs efficient interactive self-attention across height, width and spectral dimensions, enabling deep fusion of spatial-spectral features. Extensive experiments on three real HSI datasets demonstrate that the proposed DCTN method outperforms existing classification methods, yielding state-of-the-art classification performance. The code is available at https://github.com/AllFever/DeepHyperX-DCTN for reproducibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
干破天完成签到 ,获得积分10
1秒前
huma应助执着涵菱采纳,获得30
1秒前
2秒前
三徙教发布了新的文献求助10
2秒前
3秒前
CyrusSo524发布了新的文献求助200
3秒前
3秒前
超帅豪完成签到,获得积分10
3秒前
LiMuzi发布了新的文献求助10
3秒前
琉璃脆发布了新的文献求助10
3秒前
4秒前
共享精神应助深情世立采纳,获得10
4秒前
耍酷的斩完成签到,获得积分20
5秒前
tengfei发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
隐形曼青应助svea采纳,获得50
6秒前
7秒前
7秒前
赘婿应助小吴采纳,获得10
7秒前
rapa发布了新的文献求助10
7秒前
8秒前
仙妮宝贝发布了新的文献求助10
8秒前
shuofeng发布了新的文献求助10
9秒前
成就映秋发布了新的文献求助10
9秒前
顺利紫山完成签到,获得积分10
9秒前
9秒前
10秒前
丰富山灵发布了新的文献求助10
10秒前
钱多多完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
bean发布了新的文献求助30
10秒前
11秒前
永吉发布了新的文献求助10
11秒前
爱科研发布了新的文献求助10
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Plant–Pollinator Interactions: From Specialization to Generalization 400
Cai Yuanpei y la educación en la República de China (1912-1949) 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3588363
求助须知:如何正确求助?哪些是违规求助? 3156903
关于积分的说明 9512790
捐赠科研通 2859742
什么是DOI,文献DOI怎么找? 1571590
邀请新用户注册赠送积分活动 737185
科研通“疑难数据库(出版商)”最低求助积分说明 722118