Deep learning-based tumor segmentation and classification in breast MRI with 3TP method

人工智能 分割 计算机科学 模式识别(心理学) 乳腺肿瘤 深度学习 乳房磁振造影 乳腺癌 医学 乳腺摄影术 癌症 内科学
作者
Edson Damasceno Carvalho,Otílio Paulo da Silva Neto,Antônio Oséas de Carvalho Filho
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:93: 106199-106199
标识
DOI:10.1016/j.bspc.2024.106199
摘要

Timely diagnosis of early breast cancer plays a critical role in improving patient outcome and increasing treatment effectiveness. Dynamic contrast-enhancing magnetic resonance imaging (DCE-MRI) is a minimally invasive test widely used in the analysis of breast cancer. Manual analysis of DCE-MRI images by the specialist is extremely complex, exhaustive, and can lead to misunderstandings. Thus, the development of automated methods for analyzing DCE-MRI images of the breast is increasing. In this research, we propose an automatic methodology capable of detecting tumors and classifying their malignancy in a DCE-MRI breast image. The proposed method consists of the use of two deep learning architectures, that is, SegNet and UNet, for breast tumor segmentation and the three-time-point (3TP) method for classifying the malignancy of segmented tumors. The proposed methodology was tested on the public Quantitative Imaging Network (QIN) Breast DCE-MRI image set, and the best result in segmentation was a Dice of 0.9332 and IoU of 0.9799. For the classification of tumor malignancy, the methodology presented an accuracy of 100%. In our research, we demonstrate that the problem of mammary tumor segmentation in DCE-MRI images can be efficiently solved using deep learning architectures, and tumor malignancy classification can be done through the three-time method. The method can be integrated as a support system for the specialist in treating patients with breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
shan完成签到,获得积分10
2秒前
3秒前
感动的白梅完成签到,获得积分10
3秒前
聪明的三问完成签到,获得积分10
4秒前
4秒前
5秒前
傲娇的凡旋应助陈隆采纳,获得10
5秒前
pyx发布了新的文献求助10
5秒前
深情安青应助紫翼采纳,获得10
5秒前
6秒前
6秒前
7秒前
8秒前
怕黑以筠完成签到,获得积分10
8秒前
ssiing完成签到,获得积分10
9秒前
小二郎应助ckw采纳,获得10
9秒前
10秒前
小张发布了新的文献求助10
10秒前
充电宝应助理理采纳,获得10
11秒前
d22110652发布了新的文献求助10
11秒前
13秒前
云歇雨住发布了新的文献求助10
13秒前
pluto应助辣目童子采纳,获得10
13秒前
aaaaa发布了新的文献求助10
14秒前
14秒前
现实的南珍完成签到,获得积分10
14秒前
ItachiSkuya应助小程同学采纳,获得10
15秒前
淡定的日记本完成签到,获得积分10
16秒前
17秒前
搜集达人应助五五采纳,获得150
17秒前
18秒前
Hello应助朱朱采纳,获得10
18秒前
多情高丽完成签到 ,获得积分10
19秒前
羊羊发布了新的文献求助10
19秒前
xbbccc发布了新的文献求助10
20秒前
orixero应助小张采纳,获得10
21秒前
打打应助小羊要努力采纳,获得10
22秒前
明月关注了科研通微信公众号
22秒前
allorate完成签到,获得积分0
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3454862
求助须知:如何正确求助?哪些是违规求助? 3050097
关于积分的说明 9020280
捐赠科研通 2738771
什么是DOI,文献DOI怎么找? 1502291
科研通“疑难数据库(出版商)”最低求助积分说明 694453
邀请新用户注册赠送积分活动 693159