Deep learning-based tumor segmentation and classification in breast MRI with 3TP method

人工智能 分割 计算机科学 模式识别(心理学) 乳腺肿瘤 深度学习 乳房磁振造影 乳腺癌 医学 乳腺摄影术 癌症 内科学
作者
Edson Damasceno Carvalho,Otílio Paulo da Silva Neto,Antônio Oseas de Carvalho Filho
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:93: 106199-106199 被引量:4
标识
DOI:10.1016/j.bspc.2024.106199
摘要

Timely diagnosis of early breast cancer plays a critical role in improving patient outcome and increasing treatment effectiveness. Dynamic contrast-enhancing magnetic resonance imaging (DCE-MRI) is a minimally invasive test widely used in the analysis of breast cancer. Manual analysis of DCE-MRI images by the specialist is extremely complex, exhaustive, and can lead to misunderstandings. Thus, the development of automated methods for analyzing DCE-MRI images of the breast is increasing. In this research, we propose an automatic methodology capable of detecting tumors and classifying their malignancy in a DCE-MRI breast image. The proposed method consists of the use of two deep learning architectures, that is, SegNet and UNet, for breast tumor segmentation and the three-time-point (3TP) method for classifying the malignancy of segmented tumors. The proposed methodology was tested on the public Quantitative Imaging Network (QIN) Breast DCE-MRI image set, and the best result in segmentation was a Dice of 0.9332 and IoU of 0.9799. For the classification of tumor malignancy, the methodology presented an accuracy of 100%. In our research, we demonstrate that the problem of mammary tumor segmentation in DCE-MRI images can be efficiently solved using deep learning architectures, and tumor malignancy classification can be done through the three-time method. The method can be integrated as a support system for the specialist in treating patients with breast cancer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dany发布了新的文献求助10
刚刚
明杰发布了新的文献求助10
刚刚
JING发布了新的文献求助10
刚刚
科研通AI6应助Wednesday Chong采纳,获得10
1秒前
Elena发布了新的文献求助10
1秒前
Stella应助zhuzhu采纳,获得10
1秒前
xxx完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
glf0203发布了新的文献求助10
3秒前
4秒前
沉默的书琴完成签到,获得积分10
4秒前
5秒前
三三完成签到,获得积分10
5秒前
星辰大海应助颜颜采纳,获得10
5秒前
wanting完成签到,获得积分20
5秒前
斯文败类应助清爽的易真采纳,获得10
6秒前
6秒前
puzhongjiMiQ发布了新的文献求助50
7秒前
青青儿发布了新的文献求助10
7秒前
puzhongjiMiQ发布了新的文献求助10
7秒前
puzhongjiMiQ发布了新的文献求助10
7秒前
舒适可乐完成签到,获得积分10
7秒前
puzhongjiMiQ发布了新的文献求助50
8秒前
puzhongjiMiQ发布了新的文献求助10
8秒前
scutwqq发布了新的文献求助10
8秒前
我不爱池鱼应助cxw采纳,获得10
8秒前
科研通AI6应助耍酷蝴蝶采纳,获得10
8秒前
8秒前
uu完成签到 ,获得积分10
8秒前
小小的梦想完成签到,获得积分10
9秒前
9秒前
9秒前
自挂东南枝完成签到,获得积分10
9秒前
10秒前
辻诺完成签到,获得积分10
11秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581398
求助须知:如何正确求助?哪些是违规求助? 4665771
关于积分的说明 14758591
捐赠科研通 4607692
什么是DOI,文献DOI怎么找? 2528319
邀请新用户注册赠送积分活动 1497608
关于科研通互助平台的介绍 1466474