自愈水凝胶
膜
材料科学
壳聚糖
纳米技术
戊二醛
生物相容性
脚手架
生物医学工程
化学
高分子化学
医学
生物化学
色谱法
冶金
作者
Lu Tan,Chenxi Huyan,Yanqiu Wang,Menghuan Li,Dong Liu,Minghan Liu,Zhong Luo,Kaiyong Cai,Yan Hu
出处
期刊:ACS Nano
[American Chemical Society]
日期:2024-03-08
卷期号:18 (11): 8360-8382
被引量:4
标识
DOI:10.1021/acsnano.3c12950
摘要
Supramolecular hydrogels emerge as a promising paradigm for sutureless wound management. However, their translation is still challenged by the insufficient mechanical robustness in the context of complex wounds in dynamic tissues. Herein, we report a tissue-adhesive supramolecular hydrogel membrane based on biocompatible precursors for dressing wounds in highly dynamic tissues, featuring robust mechanical resilience through programmable strain-adaptive entanglement among microdomains. Specifically, the hydrogels are synthesized by incorporating a long-chain polyurethane segment into a Schiff base-ligated short-chain oxidized cellulose/quaternized chitosan network via acylhydrazone bonding, which readily establishes interpenetrating entangled microdomains in dynamic cross-linked hydrogel matrices to enhance their tear and fatigue resistance against extreme mechanical stresses. After being placed onto dynamic tissues, the hydrogel dressing could efficiently absorb blood to achieve rapid hemostasis. Moreover, metal ions released from ruptured erythrocytes could be scavenged by the Schiff base linkers to form additional ionic bonds, which would trigger the cross-linking of the short-chain components and establish abundant crystalline microdomains, eventually leading to the in situ stiffening of the hydrogels to endure heavy mechanical loads. Benefiting from its hemostatic capacity and strain adaptable mechanical performance, this hydrogel wound dressing shows promise for the clinical management of various traumatic wounds.
科研通智能强力驱动
Strongly Powered by AbleSci AI