下部结构
药品
计算机科学
钥匙(锁)
图形
变压器
药物与药物的相互作用
利用
理论计算机科学
医学
药理学
工程类
计算机安全
结构工程
电气工程
电压
作者
Peiliang Zhang,Yuanjie Liu,Zhishu Shen
标识
DOI:10.1109/bibm58861.2023.10385795
摘要
Drug substructure plays a crucial role in predicting drug-drug interaction (DDI) with combination drugs for disease therapies. In order to exploit the effect of drug substructure on DDI prediction, we propose a Key Substructure-aware Graph Transformer Network for Drug-drug Interaction Prediction (KSGTN-DDI). First, the substructure-adaptive graph Transformer module adaptively explicit encoding of drug structures information. Then, the key substructure-aware module calculates the importance of different substructures in DDI prediction. Finally, the calculated important substructure aggregation features are used to reconstruct the drug-drug interactions. Relevant experiments indicate that the performance of KSGTN-DDI outperforms other DDI prediction models.
科研通智能强力驱动
Strongly Powered by AbleSci AI