作者
Lihong Zhang,Wanjun Peng,Jianqing Wu,Xiaohui Wei,Rong Na,Gengxin Zhang,Hekai Yang,Xiaoxu Ding,Binbin Zhao,Jiangning Liu
摘要
Hand, foot, and mouth disease (HFMD) is caused by more than 20 pathogenic enteroviruses belonging to the Picornaviridae family and Enterovirus genus. Since the introduction of the enterovirus-71 (EV71) vaccine in 2016, the number of HFMD cases caused by EV71 has decreased. However, cases of infections caused by other enteroviruses, such as coxsackievirus A6 (CA6) and coxsackievirus A10, have been increasing accordingly. In this study, we used a clinical isolate of CA6 to establish an intragastric infection mouse model using 7-day-old mice to mimic the natural transmission route, by which we investigated the differential gene expression profiles associated with virus infection and pathogenicity. After intragastric infection, mice exhibited hind limb paralysis symptoms and weight loss, similar to those reported for EV71 infection in mice. The skeletal muscle was identified as the main site of virus replication, with a peak viral load reaching 2.31 × 107 copies/mg at 5 dpi and increased infiltration of inflammatory cells. RNA sequencing analysis identified differentially expressed genes (DEGs) after CA6 infection. DEGs in the blood, muscle, brain, spleen, and thymus were predominantly enriched in immune system responses, including pathways such as Toll-like receptor signaling and PI3K-Akt signaling. Our study has unveiled the genes involved in the host immune response during CA6 infection, thereby enhancing our comprehension of the pathological mechanism of HFMD.IMPORTANCEThis study holds great significance for the field of hand, foot, and mouth disease (HFMD). It not only delves into the disease's etiology, transmission pathways, and severe complications but also establishes a novel mouse model that mimics the natural coxsackievirus A6 infection process, providing a pivotal platform to delve deeper into virus replication and pathogenic mechanisms. Additionally, utilizing RNA-seq technology, it unveils the dynamic gene expression changes during infection, offering valuable leads for identifying novel therapeutic drug targets. This research has the potential to enhance our understanding of HFMD, offering fresh perspectives for disease prevention and treatment and positively impacting children's health worldwide.