Price signal or blockchain technology? Quality information disclosure in dual-channel supply chains

违反直觉 供应链 频道(广播) 质量(理念) 信息不对称 对偶(语法数字) 业务 产业组织 供求关系 Boosting(机器学习) 微观经济学 经济 计算机科学 营销 电信 认识论 机器学习 文学类 哲学 艺术
作者
Qian Zhang,Yongjian Li,Pengwen Hou,Jun Wang
出处
期刊:European Journal of Operational Research [Elsevier]
卷期号:316 (1): 126-137 被引量:8
标识
DOI:10.1016/j.ejor.2024.01.019
摘要

Quality information asymmetry regardless of online or offline channels have damaged the profits of high-quality manufacturers. Price signal and blockchain technology (BCT) are two strategies to eliminate this asymmetry, with BCT potentially incurring higher costs but also boosting demand potential. Therefore, in a dual-channel supply chain consisting of a manufacturer with private quality information and a retailer, we use a game-theoretic model to investigate which information strategy should be adopted by the high-quality manufacturer. Main results unveil a counterintuitive finding: the high-quality manufacturer may not reap greater benefits from BCT despite its ability to simultaneously boost prices and demands in both channels; conversely, the retailer can still derive benefits from BCT even if it fails to augment the expected demand in the retail channel. We attribute this phenomenon to two key effects of BCT: the information effect and the basic demand expansion effect. Additionally, we highlight the pivotal impact of channel market share on the value of these two strategies, as it not only affects the efficiency of information transmission through the price signal strategy but also the distinct demand enhancement that BCT offers to both channels. Specifically, for the products with a lower production cost difference and a higher market share in the retail channel, our research demonstrates that BCT has the potential to benefit the entire supply chain. This paper provides practical guidance for the strategic implementation of BCT in dual channels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助小豆芽儿采纳,获得10
刚刚
1秒前
1秒前
FFF完成签到,获得积分20
2秒前
学术小黄完成签到,获得积分10
2秒前
么系么系发布了新的文献求助10
2秒前
3秒前
小洪俊熙完成签到,获得积分10
4秒前
123完成签到,获得积分10
4秒前
SYLH应助di采纳,获得10
4秒前
4秒前
柒毛完成签到 ,获得积分10
5秒前
搜集达人应助tatata采纳,获得20
5秒前
英俊的铭应助诚c采纳,获得10
5秒前
兔子完成签到 ,获得积分10
5秒前
5秒前
苹果巧蕊完成签到 ,获得积分10
5秒前
脑洞疼应助SDS采纳,获得10
5秒前
JamesPei应助Guo采纳,获得20
6秒前
马保国123完成签到,获得积分10
6秒前
6秒前
6秒前
迷你的冰巧完成签到,获得积分10
6秒前
万能图书馆应助学术蝗虫采纳,获得10
7秒前
慕青应助aurora采纳,获得30
7秒前
Jasper应助满意的盼夏采纳,获得10
7秒前
yitang完成签到,获得积分10
9秒前
www完成签到,获得积分10
9秒前
zhenzhen发布了新的文献求助10
9秒前
飞羽发布了新的文献求助10
9秒前
江沅完成签到 ,获得积分10
9秒前
10秒前
10秒前
Sean完成签到,获得积分10
10秒前
兜兜完成签到 ,获得积分10
10秒前
羊羊羊发布了新的文献求助10
11秒前
Rui完成签到,获得积分10
11秒前
bigger.b完成签到,获得积分10
11秒前
Nerissa完成签到,获得积分10
11秒前
Dr.Tang发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678