Two birds with one stone: One-pot concurrent Ta-doping and -coating on Ni-rich LiNi0.92Co0.04Mn0.04O2 cathode materials with fiber-type microstructure and Li+-conducting layer formation

微观结构 阴极 图层(电子) 兴奋剂 材料科学 涂层 纤维 复合材料 化学 光电子学 物理化学
作者
Yola Bertilsya Hendri,Liang‐Yin Kuo,Manojkumar Seenivasan,Yi−Shiuan Wu,She–Huang Wu,Jeng‐Kuei Chang,Rajan Jose,Martin Ihrig,Payam Kaghazchi,Chun‐Chen Yang
出处
期刊:Journal of Colloid and Interface Science [Elsevier]
卷期号:661: 289-306 被引量:14
标识
DOI:10.1016/j.jcis.2024.01.094
摘要

A novel scalable Taylor–Couette reactor (TCR) synthesis method was employed to prepare Ta-modified LiNi0.92Co0.04Mn0.04O2 (T-NCM92) with different Ta contents. Through experiments and density functional theory (DFT) calculations, the phase and microstructure of Ta-modified NCM92 were analyzed, showing that Ta provides a bifunctional (doping and coating at one time) effect on LiNi0.92Co0.04Mn0.04O2 cathode material through a one-step synthesis process via a controlling suitable amount of Ta and Li-salt. Ta doping allows the tailoring of the microstructure, orientation, and morphology of the primary NCM92 particles, resulting in a needle-like shape with fine structures that considerably enhance Li+ ion diffusion and electrochemical charge/discharge stability. The Ta-based surface-coating layer effectively prevented microcrack formation and inhibited electrolyte decomposition and surface-side reactions during cycling, thereby significantly improving the electrochemical performance and long-term cycling stability of NCM92 cathodes. Our as-prepared NCM92 modified with 0.2 mol% Ta (i.e., T2-NCM92) exhibits outstanding cyclability, retaining 84.5 % capacity at 4.3 V, 78.3 % at 4.5 V, and 67.6 % at 45 ℃ after 200 cycles at 1C. Even under high-rate conditions (10C), T2-NCM92 demonstrated a remarkable capacity retention of 66.9 % after 100 cycles, with an initial discharge capacity of 157.6 mAh g−1. Thus, the Ta modification of Ni-rich NCM92 materials is a promising option for optimizing NCM cathode materials and enabling their use in real-world electric vehicle (EV) applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏苏发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
科研通AI6应助duo采纳,获得10
1秒前
胚芽发布了新的文献求助10
2秒前
英俊的铭应助林兮采纳,获得10
2秒前
ding应助vixerunt采纳,获得10
2秒前
小录发布了新的文献求助10
2秒前
MM驳回了deng应助
2秒前
球球发布了新的文献求助10
3秒前
顾矜应助冷艳中蓝采纳,获得10
3秒前
uncle完成签到,获得积分10
3秒前
Hu发布了新的文献求助10
3秒前
zdy!完成签到,获得积分10
3秒前
苗苗发布了新的文献求助10
3秒前
量子玫瑰发布了新的文献求助10
4秒前
4秒前
wy发布了新的文献求助10
4秒前
4秒前
欣喜的初雪完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
SciGPT应助疯狂的寻绿采纳,获得10
6秒前
能干妙竹完成签到,获得积分10
6秒前
小鹅完成签到,获得积分10
6秒前
ww简完成签到,获得积分10
7秒前
无极微光应助ZM采纳,获得20
7秒前
monster0101完成签到 ,获得积分10
8秒前
8秒前
Hello应助斯文莺采纳,获得10
8秒前
科研通AI6应助脑洞大开采纳,获得10
8秒前
Lucas应助球球采纳,获得10
8秒前
zdy!发布了新的文献求助10
8秒前
小二郎应助任性秋烟采纳,获得10
8秒前
8秒前
caoxiongfeng_512完成签到,获得积分10
9秒前
有梦想的人不睡觉完成签到,获得积分10
9秒前
不耻上问发布了新的文献求助10
9秒前
美女完成签到,获得积分10
10秒前
10秒前
呆萌安萱完成签到,获得积分10
10秒前
white完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660943
求助须知:如何正确求助?哪些是违规求助? 4836395
关于积分的说明 15092694
捐赠科研通 4819601
什么是DOI,文献DOI怎么找? 2579405
邀请新用户注册赠送积分活动 1533827
关于科研通互助平台的介绍 1492605