Evolvable graph neural network for system-level incremental fault diagnosis of train transmission systems

火车 人工神经网络 组分(热力学) 计算机科学 图形 断层(地质) 传输(电信) 可靠性(半导体) 机器学习 工程类 可靠性工程 实时计算 人工智能 理论计算机科学 电信 地理 地震学 功率(物理) 地质学 物理 热力学 量子力学 地图学
作者
Ao Ding,Yong Qin,Biao Wang,Liang Guo,Limin Jia,Xiaoqing Cheng
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:210: 111175-111175 被引量:18
标识
DOI:10.1016/j.ymssp.2024.111175
摘要

Intelligent fault diagnosis and continual learning techniques for train transmission systems are becoming more appealing to ensure the operation safety and reliability of trains. However, existing related methods have the following limitations. 1) They build separate fault diagnosis networks for each key component in train transmission systems, which not only brings burdensome work for training and managing diagnosis networks but also ignores the influence of fault propagation and interaction between adjacent components. 2) They rely on enough class-incremental samples for continual learning to obtain the growth diagnosis ability, but the accumulations of incremental fault samples are long-period processes, leading to belated network evolution and hysteretic performance enhancement. To overcome the above-mentioned limitations, an evolvable system-level fault diagnosis framework is proposed for train transmission systems. In the proposed framework, a novel graph neural network is first constructed based on component spatial relationships, which is able to effectively learn and capture the interaction between components and integrate fault diagnosis tasks into a unified framework. Then, an anhysteretic evolution learning mechanism is developed to avoid lengthy waiting for new fault sample accumulations, in which over-fitting due to insufficient incremental fault sample is addressed by employing prototype-based classifiers and diagnostic knowledge is transferred and captured by maintaining and generating prototypes. The effectiveness of the proposed diagnosis framework is verified by taking a case study of fault diagnosis for subway train transmission systems, and its superiority is demonstrated by comparison with some stage-of-the-art diagnosis methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无限达完成签到,获得积分10
1秒前
1秒前
1秒前
徐才发布了新的文献求助10
2秒前
手帕很忙完成签到,获得积分10
2秒前
泡泡发布了新的文献求助10
3秒前
凯蒂发布了新的文献求助10
4秒前
庄周完成签到,获得积分10
5秒前
FashionBoy应助长青采纳,获得10
6秒前
BJiAr发布了新的文献求助10
7秒前
万能图书馆应助haha采纳,获得10
9秒前
王三歲发布了新的文献求助10
11秒前
Orange应助泡泡采纳,获得10
12秒前
大模型应助fmk采纳,获得10
18秒前
18秒前
ATK20000完成签到 ,获得积分10
19秒前
cdercder应助光亮机器猫采纳,获得30
19秒前
自由的小土豆完成签到,获得积分10
20秒前
王三歲完成签到,获得积分10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
Akim应助科研通管家采纳,获得10
22秒前
Singularity应助科研通管家采纳,获得10
22秒前
22秒前
英姑应助科研通管家采纳,获得10
22秒前
英姑应助科研通管家采纳,获得10
22秒前
丘比特应助科研通管家采纳,获得10
22秒前
迟大猫应助科研通管家采纳,获得10
22秒前
Singularity应助科研通管家采纳,获得10
22秒前
22秒前
迟大猫应助科研通管家采纳,获得10
22秒前
小蘑菇应助科研通管家采纳,获得10
22秒前
迟大猫应助科研通管家采纳,获得10
22秒前
heavenhorse应助科研通管家采纳,获得10
22秒前
bkagyin应助科研通管家采纳,获得10
22秒前
酷波er应助科研通管家采纳,获得10
22秒前
迟大猫应助科研通管家采纳,获得10
22秒前
Lingdongmei应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
orixero应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672384
求助须知:如何正确求助?哪些是违规求助? 3228736
关于积分的说明 9781794
捐赠科研通 2939160
什么是DOI,文献DOI怎么找? 1610638
邀请新用户注册赠送积分活动 760696
科研通“疑难数据库(出版商)”最低求助积分说明 736174