亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dynamic Identification Method for Potential Threat Vehicles beyond Line of Sight in Expressway Scenarios

计算机科学 视力 鉴定(生物学) 实时计算 构造(python库) 人工智能 模拟 计算机网络 植物 物理 天文 生物
作者
Fumin Zou,Chenxi Xia,Feng Guo,Xinjian Cai,Qiqin Cai,Guanghao Luo,Ting Ye
出处
期刊:Applied sciences [MDPI AG]
卷期号:13 (23): 12899-12899
标识
DOI:10.3390/app132312899
摘要

Due to the challenge of limited line of sight in the perception system of intelligent driving vehicles (cameras, radar, body sensors, etc.), which can only perceive threats within a limited range, potential threats outside the line of sight cannot be fed back to the driver. Therefore, this article proposes a safety perception detection method for beyond the line of sight for intelligent driving. This method can improve driving safety, enabling drivers to perceive potential threats to vehicles in the rear areas beyond the line of sight earlier and make decisions in advance. Firstly, the electronic toll collection (ETC) transaction data are preprocessed to construct the vehicle trajectory speed dataset; then, wavelet transform (WT) is used to decompose and reconstruct the speed dataset, and lightweight gradient noosting machine learning (LightGBM) is adopted to train and learn the features of the vehicle section speed. On this basis, we also consider the features of vehicle type, traffic flow, and other characteristics, and construct a quantitative method to identify potential threat vehicles (PTVs) based on a fuzzy set to realize the dynamic safety assessment of vehicles, so as to effectively detect PTVs within the over-the-horizon range behind the driver. We simulated an expressway scenario using an ETC simulation platform to evaluate the detection of over-the-horizon PTVs. The simulation results indicate that the method can accurately detect PTVs of different types and under different road scenarios with an identification accuracy of 97.66%, which verifies the effectiveness of the method in this study. This result provides important theoretical and practical support for intelligent driving safety assistance in vehicle–road collaboration scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
张立人发布了新的文献求助10
4秒前
iii完成签到 ,获得积分10
17秒前
上官若男应助张立人采纳,获得10
52秒前
1分钟前
张立人发布了新的文献求助10
1分钟前
1分钟前
momi完成签到 ,获得积分10
1分钟前
忧虑的代容完成签到 ,获得积分10
1分钟前
完美芹完成签到,获得积分10
1分钟前
Georgechan完成签到,获得积分10
1分钟前
完美芹发布了新的文献求助10
1分钟前
孙明丽完成签到,获得积分10
1分钟前
孙明丽发布了新的文献求助20
1分钟前
1分钟前
雪白元风完成签到 ,获得积分10
1分钟前
乌龟娟应助完美芹采纳,获得10
1分钟前
牛八先生完成签到,获得积分10
2分钟前
充电宝应助oshunne采纳,获得10
2分钟前
SciGPT应助酷炫薯片采纳,获得10
2分钟前
2分钟前
2分钟前
oshunne发布了新的文献求助10
3分钟前
meng发布了新的文献求助10
3分钟前
oshunne完成签到,获得积分10
3分钟前
3分钟前
汉堡包应助紫苑采纳,获得20
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
紫苑发布了新的文献求助20
3分钟前
桐桐应助鲜于元龙采纳,获得10
3分钟前
3分钟前
酷炫薯片发布了新的文献求助10
3分钟前
Yyyk发布了新的文献求助10
4分钟前
Yyyk发布了新的文献求助10
4分钟前
史前巨怪完成签到,获得积分10
5分钟前
爱静静应助科研通管家采纳,获得30
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得30
5分钟前
思源应助科研通管家采纳,获得10
5分钟前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Apply error vector measurements in communications design 300
Synchrotron X-Ray Methods in Clay Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3346841
求助须知:如何正确求助?哪些是违规求助? 2973392
关于积分的说明 8659208
捐赠科研通 2653886
什么是DOI,文献DOI怎么找? 1453360
科研通“疑难数据库(出版商)”最低求助积分说明 672885
邀请新用户注册赠送积分活动 662830