Human ILC1s Target Leukemia Stem Cells and Control Development of AML

干细胞 免疫学 髓系白血病 白血病 医学 髓样 CD33 移植 癌症研究 川地34 内科学 肿瘤科 生物 遗传学
作者
Zhenlong Li,Hejun Tang,Victoria Chen,Rui Ma,Jianying Zhang,Guido Marcucci,Jianhua Yu,Michael A. Caligiuri
出处
期刊:Blood [American Society of Hematology]
卷期号:142 (Supplement 1): 886-886
标识
DOI:10.1182/blood-2023-190767
摘要

Acute myeloid leukemia (AML) is a devastating disease with a median 5-year survival of only 40-45% for patients younger than age 65 who are treated with standard chemotherapy. Although in some cases allogeneic stem cell transplantation has proven to be curative, the treatment-related mortality and the risk for disease relapse due to persistence of leukemia stem cells (LSCs) remains relatively high. Therefore, safer and more effective novel therapeutic approaches are needed to improve the clinical outcomes of patients with AML. Innate lymphoid cell (ILC) is critical in mediating immune responses and regulating tissue homeostasis and inflammation. We recently reported that mouse ILC1s contribute to the control of AML by eliminating LSCs and inhibiting their differentiation into myeloid blasts, and functional impairment of mouse ILC1s in AML leads to the outgrowth of LSCs and disease relapse (Li et al., Nature Immunology. 2022). However, the full role and mechanistic characterization of human ILC1s in anti-tumor responses to AML remains to be fully explored. Upon analysis of ILC1s in the blood of patients with AML at the onset of disease, we observed a highly significant reduction in the total ILC1s count among lineage-negative cells (Lin −, defined asdepletion of CD3, CD4, CD8, CD14, CD15, CD16, CD19, CD20, CD33, CD34, CD203c, FceRI, and CD56 positive cells) relative to healthy donors ( p = 0.031, n = 6 healthy donors; n = 4 patients with AML). Further, functional ILC1s positive for IFNγ and DNAM-1 were significantly reduced in the patients with AML compared to healthy donors. Analysis of 106 AML cases from the Cancer Genome Atlas (TCGA) showed that AML patients with a high ILC1 gene signature had a significantly prolonged overall survival compared to AML patients with a low ILC1 gene signature. By directly interacting with LSCs, human ILC1s can eliminate LSCs via the production of IFNγ. Through Wright-Giemsa staining, we observed that ILC1s blocked the differentiation of CD34 +CD38 − cells into macrophage-like leukemia-supporting cells, which were previously reported to support the growth of leukemic cells rather than inhibit them. Flow cytometry of these differentiated cells showed that some exhibited the tumor-promoting phenotype with expression of CD11b and CD206. These macrophage-like leukemia-supporting cells significantly decreased when co-cultured with ILC1s. This differentiation is at least partially dependent on TNF secreted by ILC1s. We also performed an in vivo transplantation experiment, in which human CD34 +CD38 − cells and human ILC1s were co-injected intravenously (i.v.) into NOD.Cg- Prkdc scid Il2rg tm1WjlTg (NSG-SGM3) mice that express human IL3, GM-CSF, and SCF to support the stable engraftment of myeloid lineages. Injection of human ILC1s from healthy individuals reduced the LSC engraftment into these mice and suppressed the progression of AML. This was evidenced by a significant decrease in the number of CD45 +CD33 + blast cells, CD34 +CD38 − LSCs, and significantly prolonged survival of the mice ( p = 0.0118, n = 5/group). These results were all in comparison to mice that did not receive an injection of ILC1s. Although ILC1s target LSCs, they have no toxicity on normal HSCs. For a therapeutic purpose, we were able to derive ILC1s from umbilical cord blood (UCB) CD34 + hematopoietic stem cells (HSCs) with over 700-fold expansion and the expanded ILC1s demonstrate authentic ILC1 phenotypes and functions. Moreover, arming the expanded ILC1s with a chimeric antigen receptor (CAR) targeting FLT3, which we previously constructed (Chen et al., Leukemia. 2017), enhanced their effector function. In conclusion, ILC1s in patients with AML are impaired, while a high expression of the ILC1 gene signature is associated with better overall survival. Human ILC1s can both eliminate LSCs via production of IFNγ and block LSC differentiation into tumor-promoting macrophage-like cells through TNF. These effects converge to limit leukemogenesis in vivo. The use of UCB CD34 + HSCs to generate ILC1s, especially after being engineered with a CAR, could allow for a readily available supply of ILC1s to be produced for human adoptive transfer studies. Our findings provide evidence that targeting human ILC1s may be a promising therapeutic approach for extending disease-free survival in patients with AML.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
今天不学习明天变垃圾完成签到,获得积分10
刚刚
1秒前
1秒前
布布完成签到,获得积分10
2秒前
一独白发布了新的文献求助10
2秒前
周周完成签到 ,获得积分10
2秒前
淡然完成签到,获得积分10
3秒前
明理小土豆完成签到,获得积分10
3秒前
刘国建郭菱香完成签到,获得积分10
3秒前
嘤嘤嘤完成签到,获得积分10
3秒前
九川应助粱自中采纳,获得10
3秒前
无辜之卉完成签到,获得积分10
4秒前
无花果应助Island采纳,获得10
4秒前
4秒前
SHDeathlock发布了新的文献求助200
5秒前
Owen应助醒醒采纳,获得10
5秒前
无心的代桃完成签到,获得积分10
6秒前
追寻代真完成签到,获得积分10
6秒前
晓兴兴完成签到,获得积分10
6秒前
leon发布了新的文献求助10
7秒前
洽洽瓜子shine完成签到,获得积分10
7秒前
简单的大白菜真实的钥匙完成签到,获得积分10
8秒前
9秒前
一独白完成签到,获得积分10
10秒前
在水一方应助坚强的樱采纳,获得10
10秒前
慕青应助尼亚吉拉采纳,获得10
11秒前
快乐小白菜应助甜酱采纳,获得10
11秒前
11秒前
qq应助毛慢慢采纳,获得10
12秒前
12秒前
科研通AI5应助吴岳采纳,获得10
12秒前
天天快乐应助ufuon采纳,获得10
13秒前
科研通AI5应助一独白采纳,获得10
14秒前
hearts_j完成签到,获得积分10
14秒前
FashionBoy应助yasan采纳,获得10
14秒前
安琪琪完成签到,获得积分10
15秒前
15秒前
端庄千琴完成签到,获得积分10
15秒前
gaogao完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762