Human ILC1s Target Leukemia Stem Cells and Control Development of AML

干细胞 免疫学 髓系白血病 白血病 医学 髓样 CD33 移植 癌症研究 川地34 内科学 肿瘤科 生物 遗传学
作者
Zhenlong Li,Hejun Tang,Victoria Chen,Rui Ma,Jianying Zhang,Guido Marcucci,Jianhua Yu,Michael A. Caligiuri
出处
期刊:Blood [Elsevier BV]
卷期号:142 (Supplement 1): 886-886
标识
DOI:10.1182/blood-2023-190767
摘要

Acute myeloid leukemia (AML) is a devastating disease with a median 5-year survival of only 40-45% for patients younger than age 65 who are treated with standard chemotherapy. Although in some cases allogeneic stem cell transplantation has proven to be curative, the treatment-related mortality and the risk for disease relapse due to persistence of leukemia stem cells (LSCs) remains relatively high. Therefore, safer and more effective novel therapeutic approaches are needed to improve the clinical outcomes of patients with AML. Innate lymphoid cell (ILC) is critical in mediating immune responses and regulating tissue homeostasis and inflammation. We recently reported that mouse ILC1s contribute to the control of AML by eliminating LSCs and inhibiting their differentiation into myeloid blasts, and functional impairment of mouse ILC1s in AML leads to the outgrowth of LSCs and disease relapse (Li et al., Nature Immunology. 2022). However, the full role and mechanistic characterization of human ILC1s in anti-tumor responses to AML remains to be fully explored. Upon analysis of ILC1s in the blood of patients with AML at the onset of disease, we observed a highly significant reduction in the total ILC1s count among lineage-negative cells (Lin −, defined asdepletion of CD3, CD4, CD8, CD14, CD15, CD16, CD19, CD20, CD33, CD34, CD203c, FceRI, and CD56 positive cells) relative to healthy donors ( p = 0.031, n = 6 healthy donors; n = 4 patients with AML). Further, functional ILC1s positive for IFNγ and DNAM-1 were significantly reduced in the patients with AML compared to healthy donors. Analysis of 106 AML cases from the Cancer Genome Atlas (TCGA) showed that AML patients with a high ILC1 gene signature had a significantly prolonged overall survival compared to AML patients with a low ILC1 gene signature. By directly interacting with LSCs, human ILC1s can eliminate LSCs via the production of IFNγ. Through Wright-Giemsa staining, we observed that ILC1s blocked the differentiation of CD34 +CD38 − cells into macrophage-like leukemia-supporting cells, which were previously reported to support the growth of leukemic cells rather than inhibit them. Flow cytometry of these differentiated cells showed that some exhibited the tumor-promoting phenotype with expression of CD11b and CD206. These macrophage-like leukemia-supporting cells significantly decreased when co-cultured with ILC1s. This differentiation is at least partially dependent on TNF secreted by ILC1s. We also performed an in vivo transplantation experiment, in which human CD34 +CD38 − cells and human ILC1s were co-injected intravenously (i.v.) into NOD.Cg- Prkdc scid Il2rg tm1WjlTg (NSG-SGM3) mice that express human IL3, GM-CSF, and SCF to support the stable engraftment of myeloid lineages. Injection of human ILC1s from healthy individuals reduced the LSC engraftment into these mice and suppressed the progression of AML. This was evidenced by a significant decrease in the number of CD45 +CD33 + blast cells, CD34 +CD38 − LSCs, and significantly prolonged survival of the mice ( p = 0.0118, n = 5/group). These results were all in comparison to mice that did not receive an injection of ILC1s. Although ILC1s target LSCs, they have no toxicity on normal HSCs. For a therapeutic purpose, we were able to derive ILC1s from umbilical cord blood (UCB) CD34 + hematopoietic stem cells (HSCs) with over 700-fold expansion and the expanded ILC1s demonstrate authentic ILC1 phenotypes and functions. Moreover, arming the expanded ILC1s with a chimeric antigen receptor (CAR) targeting FLT3, which we previously constructed (Chen et al., Leukemia. 2017), enhanced their effector function. In conclusion, ILC1s in patients with AML are impaired, while a high expression of the ILC1 gene signature is associated with better overall survival. Human ILC1s can both eliminate LSCs via production of IFNγ and block LSC differentiation into tumor-promoting macrophage-like cells through TNF. These effects converge to limit leukemogenesis in vivo. The use of UCB CD34 + HSCs to generate ILC1s, especially after being engineered with a CAR, could allow for a readily available supply of ILC1s to be produced for human adoptive transfer studies. Our findings provide evidence that targeting human ILC1s may be a promising therapeutic approach for extending disease-free survival in patients with AML.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牧紫菱完成签到,获得积分10
刚刚
1秒前
2秒前
小王发布了新的文献求助10
2秒前
2秒前
Eric完成签到,获得积分10
3秒前
开朗的山彤完成签到,获得积分10
3秒前
维生素完成签到,获得积分10
3秒前
时林完成签到,获得积分10
3秒前
傻瓜完成签到 ,获得积分10
4秒前
5秒前
大观天下发布了新的文献求助10
7秒前
忽远忽近的她完成签到 ,获得积分10
7秒前
维生素发布了新的文献求助10
8秒前
butterfly发布了新的文献求助10
10秒前
豆豆完成签到 ,获得积分10
11秒前
范先生完成签到,获得积分10
14秒前
2222222完成签到,获得积分10
14秒前
Hello应助bulingbuling采纳,获得10
14秒前
蜡笔小新完成签到,获得积分10
17秒前
希望天下0贩的0应助小王采纳,获得10
17秒前
赘婿应助lh采纳,获得10
18秒前
18秒前
科研通AI2S应助butterfly采纳,获得10
19秒前
大模型应助butterfly采纳,获得10
19秒前
21秒前
做个梦给你完成签到,获得积分10
21秒前
学霸宇大王完成签到 ,获得积分10
21秒前
甜蜜的楷瑞完成签到,获得积分10
22秒前
魏煜佳完成签到,获得积分10
23秒前
Lc完成签到,获得积分10
23秒前
三伏天完成签到,获得积分10
23秒前
清图完成签到,获得积分10
23秒前
英姑应助简单采纳,获得10
23秒前
爱喝牛奶的大兔子完成签到 ,获得积分20
24秒前
25秒前
25秒前
潇湘雪月完成签到,获得积分10
26秒前
迎南完成签到,获得积分10
26秒前
懒癌晚期完成签到,获得积分10
27秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038388
求助须知:如何正确求助?哪些是违规求助? 3576106
关于积分的说明 11374447
捐赠科研通 3305798
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029