已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Cuffless Blood Pressure Estimation During Moderate- and Heavy-Intensity Exercise Using Wearable ECG and PPG

可穿戴计算机 强度(物理) 血压 计算机科学 光容积图 估计 医学 内科学 电信 工程类 物理 嵌入式系统 无线 系统工程 量子力学
作者
Cederick Landry,Eric T. Hedge,Richard L. Hughson,Sean D. Peterson,Arash Arami
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (12): 5942-5952 被引量:8
标识
DOI:10.1109/jbhi.2022.3207947
摘要

To develop and evaluate an accurate method for cuffless blood pressure (BP) estimation during moderate- and heavy-intensity exercise.Twelve participants performed three cycling exercises: a ramp-incremental exercise to exhaustion, and moderate and heavy pseudorandom binary sequence exercises on an electronically braked cycle ergometer over the course of 21 minutes. Subject-specific and population-based nonlinear autoregressive models with exogenous inputs (NARX) were compared with feedforward artificial neural network (ANN) models and pulse arrival time (PAT) models.Population-based NARX models, (applying leave-one-subject-out cross-validation), performed better than the other models and showed good capability for estimating large changes in mean arterial pressure (MAP). The models were unable to track consistent decreases in BP during prolonged exercise caused by reduction in peripheral vascular resistance, since this information is apparently not encoded in the employed proxy physiological signals (electrocardiography and forehead PPG) used for BP estimation. Nevertheless, the population-based NARX model had an error standard deviation of 11.0 mmHg during the entire exercise window, which improved to 9.0 mmHg when the model was periodically calibrated every 7 minutes.Population-based NARX models can estimate BP during moderate- and heavy-intensity exercise but need periodic calibration to account for the change in vascular resistance during exertion.MAP can be continuously tracked during exercise using only wearable sensors, making monitoring exercise physiology more convenient and accessible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
漂亮的曼文完成签到 ,获得积分10
1秒前
善学以致用应助风笛采纳,获得10
2秒前
123开花完成签到 ,获得积分10
4秒前
home完成签到,获得积分10
4秒前
6秒前
诗诗发布了新的文献求助10
8秒前
10秒前
安然发布了新的文献求助10
10秒前
10秒前
小管完成签到,获得积分20
12秒前
12秒前
ZYH关注了科研通微信公众号
13秒前
13秒前
inzaghi完成签到,获得积分10
14秒前
14秒前
小管发布了新的文献求助10
15秒前
ple发布了新的文献求助10
16秒前
风笛发布了新的文献求助10
17秒前
luroa完成签到 ,获得积分10
17秒前
kingwill应助小管采纳,获得30
21秒前
23秒前
25秒前
Akim应助辉hui采纳,获得10
25秒前
ple完成签到,获得积分10
28秒前
搜集达人应助xishanmeng采纳,获得30
28秒前
安然发布了新的文献求助10
28秒前
打打应助冷傲汽车采纳,获得10
31秒前
耶耶耶发布了新的文献求助10
31秒前
菠萝菠萝哒应助ggn采纳,获得30
34秒前
35秒前
MizuAsagi驳回了Ava应助
36秒前
北梦完成签到,获得积分10
37秒前
38秒前
大模型应助活泼学生采纳,获得10
38秒前
闵卷完成签到,获得积分10
40秒前
40秒前
42秒前
安然发布了新的文献求助10
43秒前
杋困了完成签到 ,获得积分10
45秒前
碧蓝幻香完成签到,获得积分10
45秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484112
求助须知:如何正确求助?哪些是违规求助? 3073192
关于积分的说明 9129970
捐赠科研通 2764864
什么是DOI,文献DOI怎么找? 1517444
邀请新用户注册赠送积分活动 702131
科研通“疑难数据库(出版商)”最低求助积分说明 701057