锰
镍
材料科学
钠
阴极
掺杂剂
离子
Boosting(机器学习)
计算机科学
化学
冶金
机器学习
光电子学
兴奋剂
物理化学
有机化学
作者
Shijie Yang,Songhua Hu,Jianfeng Zhao,Hongwei Cui,Yongfei Wang,Shuai Zhao,Chunfeng Lan,Zhurong Dong
标识
DOI:10.1002/ente.202200733
摘要
Understanding the cyclic discharge feature of oxide cathodes, such as sodium‐based nickel–manganese (NMMn), determines the future applications of sodium‐ion batteries. Machine learning methods, including gradient‐boosting models and random forest (RF) machine, are applied to an experimental dataset of these NMMn materials. Herein, gradient‐boosting models achieve a better performance than RF machine in predicting the discharge properties of these materials. The results indicate that the dopant content ratio, sodium content, and nickel content play important roles in the initial discharge capacities (IC) and 50th cycle end discharge capacities (EC) of these materials. NMMn cathodes with a specific sodium content (0.75 < x < 1.25), a dopant content ( x < 0.2), and a nickel content ( x < 0.4) are more likely to possess high ICs and ECs. Unlike the cathode for lithium‐ion batteries, herein, nickel content in NMMn affects more on 50th cycle EC. These results offer new guidelines to design high‐performance cathodes for sodium‐ion batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI