Learning Outside the Classroom During a Pandemic: Evidence from an Artificial Intelligence-Based Education App

步伐 心理学 大流行 课程 透视图(图形) 2019年冠状病毒病(COVID-19) 社会心理学 认知心理学 教育学 计算机科学 人工智能 医学 病理 地理 传染病(医学专业) 疾病 大地测量学
作者
Ga Young Ko,Donghyuk Shin,Seigyoung Auh,Yeonjung Lee,Sang Pil Han
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (6): 3616-3649 被引量:12
标识
DOI:10.1287/mnsc.2022.4531
摘要

Drawing on the notion of compensatory behavior, this paper studies how students compensate for learning loss during a pandemic and what role artificial intelligence (AI) plays in this regard. We further probe into a difference in compensatory behavior for learning loss in terms of quantity, pattern, and pace (i.e., tripartite aspect of learning behavior) of AI-powered learning app usage depending on the level of pandemic threat and the proximity of a goal to students. Results show that the pandemic threat affects student learning behavior differently. Immediately following the COVID-19 outbreak, students who live in the epicenter of the outbreak (versus those who do not) use the app less at first, but with time, they use it more (quantity), on a more regular basis (pattern), and rebound to a curriculum path (pace) comparable to students who do not live in the outbreak’s epicenter. These findings collectively explain behavior that is consistent with compensation for learning loss. The results also partially corroborate the goal-proximity effect, revealing that proximity to a goal (e.g., the degree to which the national university admission exam is approaching) has a moderating role in explaining the tripartite perspective of student learning behavior. Overall, these findings have important theoretical and practical implications for understanding how innovative education technologies can not only facilitate student learning during adversity, but also support learning recovery after adversity. This paper was accepted by D. J. Wu, information systems. Supplemental Material: Data files available at https://doi.org/10.1287/mnsc.2022.4531 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
mdjsf完成签到,获得积分10
2秒前
人福药业完成签到,获得积分10
4秒前
4秒前
4秒前
Orange应助王世缘采纳,获得10
5秒前
彬彬爷888发布了新的文献求助10
6秒前
masheng发布了新的文献求助10
6秒前
唠叨的黄蜂完成签到,获得积分10
7秒前
锤子发布了新的文献求助10
7秒前
7秒前
wm999发布了新的文献求助10
8秒前
11秒前
12秒前
木子李完成签到,获得积分10
13秒前
夜雪完成签到,获得积分10
14秒前
赘婿应助营养快炫采纳,获得10
14秒前
欣喜的伟泽完成签到,获得积分10
15秒前
16秒前
传奇3应助masheng采纳,获得10
17秒前
金籽完成签到,获得积分10
17秒前
Orange应助等待采纳,获得10
18秒前
hoangphong完成签到,获得积分10
18秒前
坚定的迎波完成签到,获得积分10
18秒前
张小璐璐完成签到,获得积分10
18秒前
小鲤鱼在睡觉完成签到,获得积分10
19秒前
chen_hebo发布了新的文献求助10
19秒前
kyt发布了新的文献求助10
20秒前
漂亮采波发布了新的文献求助10
20秒前
二七完成签到 ,获得积分10
20秒前
wm999完成签到,获得积分20
21秒前
西大喜完成签到,获得积分10
23秒前
23秒前
乐乐应助洺全采纳,获得10
24秒前
善学以致用应助kyt采纳,获得10
27秒前
amity发布了新的文献求助10
28秒前
lxgz发布了新的文献求助10
31秒前
G蛋白偶联发布了新的文献求助30
31秒前
zym777完成签到 ,获得积分10
32秒前
yookia应助lewis17采纳,获得10
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954521
求助须知:如何正确求助?哪些是违规求助? 3500590
关于积分的说明 11100070
捐赠科研通 3231090
什么是DOI,文献DOI怎么找? 1786258
邀请新用户注册赠送积分活动 869920
科研通“疑难数据库(出版商)”最低求助积分说明 801719