Learning Outside the Classroom During a Pandemic: Evidence from an Artificial Intelligence-Based Education App

步伐 心理学 大流行 课程 透视图(图形) 2019年冠状病毒病(COVID-19) 社会心理学 认知心理学 教育学 计算机科学 人工智能 医学 病理 地理 传染病(医学专业) 疾病 大地测量学
作者
Ga Young Ko,Donghyuk Shin,Seigyoung Auh,Yeonjung Lee,Sang Pil Han
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (6): 3616-3649 被引量:9
标识
DOI:10.1287/mnsc.2022.4531
摘要

Drawing on the notion of compensatory behavior, this paper studies how students compensate for learning loss during a pandemic and what role artificial intelligence (AI) plays in this regard. We further probe into a difference in compensatory behavior for learning loss in terms of quantity, pattern, and pace (i.e., tripartite aspect of learning behavior) of AI-powered learning app usage depending on the level of pandemic threat and the proximity of a goal to students. Results show that the pandemic threat affects student learning behavior differently. Immediately following the COVID-19 outbreak, students who live in the epicenter of the outbreak (versus those who do not) use the app less at first, but with time, they use it more (quantity), on a more regular basis (pattern), and rebound to a curriculum path (pace) comparable to students who do not live in the outbreak’s epicenter. These findings collectively explain behavior that is consistent with compensation for learning loss. The results also partially corroborate the goal-proximity effect, revealing that proximity to a goal (e.g., the degree to which the national university admission exam is approaching) has a moderating role in explaining the tripartite perspective of student learning behavior. Overall, these findings have important theoretical and practical implications for understanding how innovative education technologies can not only facilitate student learning during adversity, but also support learning recovery after adversity. This paper was accepted by D. J. Wu, information systems. Supplemental Material: Data files available at https://doi.org/10.1287/mnsc.2022.4531 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
田様应助阿喵采纳,获得10
2秒前
华子的五A替身完成签到,获得积分10
2秒前
3秒前
4秒前
5秒前
gluwater完成签到,获得积分20
7秒前
科研通AI2S应助消消乐采纳,获得10
8秒前
fr0zen发布了新的文献求助10
8秒前
星落枝头发布了新的文献求助10
10秒前
ckkk发布了新的文献求助10
10秒前
HEIKU应助bigben446采纳,获得10
10秒前
凡人丿完成签到,获得积分10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
诗图应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
泽ze应助科研通管家采纳,获得20
11秒前
12秒前
卡卡完成签到 ,获得积分20
14秒前
15秒前
15秒前
15秒前
小寒完成签到 ,获得积分20
18秒前
jiningrui发布了新的文献求助10
19秒前
EmilyWu121发布了新的文献求助10
19秒前
20秒前
20秒前
21秒前
科目三应助lilililili采纳,获得10
22秒前
moxuanccc发布了新的文献求助10
24秒前
慕哈哈哈完成签到,获得积分20
25秒前
乌纱帽完成签到,获得积分10
26秒前
FashionBoy应助何求采纳,获得10
27秒前
32秒前
33秒前
高分求助中
中国国际图书贸易总公司40周年纪念文集: 史论集 2500
Sustainability in Tides Chemistry 2000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3113117
求助须知:如何正确求助?哪些是违规求助? 2763428
关于积分的说明 7674704
捐赠科研通 2418658
什么是DOI,文献DOI怎么找? 1283994
科研通“疑难数据库(出版商)”最低求助积分说明 619464
版权声明 599625