Learning Outside the Classroom During a Pandemic: Evidence from an Artificial Intelligence-Based Education App

步伐 心理学 大流行 课程 透视图(图形) 2019年冠状病毒病(COVID-19) 社会心理学 认知心理学 教育学 计算机科学 人工智能 医学 病理 地理 传染病(医学专业) 疾病 大地测量学
作者
Ga Young Ko,Donghyuk Shin,Seigyoung Auh,Yeonjung Lee,Sang Pil Han
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (6): 3616-3649 被引量:14
标识
DOI:10.1287/mnsc.2022.4531
摘要

Drawing on the notion of compensatory behavior, this paper studies how students compensate for learning loss during a pandemic and what role artificial intelligence (AI) plays in this regard. We further probe into a difference in compensatory behavior for learning loss in terms of quantity, pattern, and pace (i.e., tripartite aspect of learning behavior) of AI-powered learning app usage depending on the level of pandemic threat and the proximity of a goal to students. Results show that the pandemic threat affects student learning behavior differently. Immediately following the COVID-19 outbreak, students who live in the epicenter of the outbreak (versus those who do not) use the app less at first, but with time, they use it more (quantity), on a more regular basis (pattern), and rebound to a curriculum path (pace) comparable to students who do not live in the outbreak’s epicenter. These findings collectively explain behavior that is consistent with compensation for learning loss. The results also partially corroborate the goal-proximity effect, revealing that proximity to a goal (e.g., the degree to which the national university admission exam is approaching) has a moderating role in explaining the tripartite perspective of student learning behavior. Overall, these findings have important theoretical and practical implications for understanding how innovative education technologies can not only facilitate student learning during adversity, but also support learning recovery after adversity. This paper was accepted by D. J. Wu, information systems. Supplemental Material: Data files available at https://doi.org/10.1287/mnsc.2022.4531 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gloval完成签到,获得积分10
4秒前
俭朴凝云发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
5秒前
科研通AI5应助chunjianghua采纳,获得10
6秒前
bing完成签到,获得积分10
7秒前
深情安青应助deway采纳,获得10
7秒前
曾经的真完成签到,获得积分20
7秒前
六七七应助yiyi037118采纳,获得10
8秒前
8秒前
9秒前
9秒前
小石头发布了新的文献求助10
9秒前
曾经的真发布了新的文献求助10
10秒前
Owen应助甜甜亦丝采纳,获得10
11秒前
abab小王发布了新的文献求助30
11秒前
俭朴凝云完成签到,获得积分10
12秒前
12秒前
自由马儿发布了新的文献求助10
13秒前
13秒前
13秒前
xmdcobra完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
金枪鱼子完成签到,获得积分10
15秒前
16秒前
喜悦的梦芝完成签到,获得积分10
16秒前
玻璃外的世界完成签到,获得积分10
17秒前
天天快乐应助曾经的真采纳,获得10
18秒前
19秒前
19秒前
deway发布了新的文献求助10
20秒前
金枪鱼子发布了新的文献求助30
20秒前
自由马儿发布了新的文献求助10
21秒前
不安青牛应助喜悦的梦芝采纳,获得10
21秒前
yuan完成签到,获得积分10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5050677
求助须知:如何正确求助?哪些是违规求助? 4278303
关于积分的说明 13336055
捐赠科研通 4093346
什么是DOI,文献DOI怎么找? 2240230
邀请新用户注册赠送积分活动 1246867
关于科研通互助平台的介绍 1175847