计算机科学
随机规划
运筹学
数学优化
运输工程
工程类
数学
作者
Karmel S. Shehadeh,Emily L. Tucker
标识
DOI:10.1016/j.trc.2022.103871
摘要
We consider the problem of preparing for a disaster season by determining where to open warehouses and how much relief item inventory to preposition in each. Then, after each disaster, prepositioned items are distributed to demand nodes during the post-disaster phase, and additional items are procured and distributed as needed. There is often uncertainty in the disaster level, affected areas’ locations, the demand for relief items, the usable fraction of prepositioned items post-disaster, procurement quantity, and arc capacity. To address uncertainty, we propose and analyze two-stage stochastic programming (SP) and distributionally robust optimization (DRO) models, assuming known and unknown (ambiguous) uncertainty distributions. The first and second stages correspond to pre- and post-disaster phases, respectively. We also propose a model that minimizes the trade-off between considering distributional ambiguity and following distributional belief. We obtain near-optimal solutions of our SP model using sample average approximation and propose a computationally efficient decomposition algorithm to solve our DRO models. We conduct extensive experiments using a hurricane season and an earthquake as case studies to investigate these approaches computational and operational performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI