Deep learning models for river classification at sub-meter resolutions from multispectral and panchromatic commercial satellite imagery

全色胶片 多光谱图像 遥感 卫星图像 卫星 计算机科学 光谱带 多光谱模式识别 像素 环境科学 光辉 卷积神经网络 人工智能 地质学 工程类 航空航天工程
作者
Joachim Moortgat,Ziwei Li,Michael Durand,I. M. Howat,Bidhyananda Yadav,Changlei Dai
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:282: 113279-113279 被引量:12
标识
DOI:10.1016/j.rse.2022.113279
摘要

Remote sensing of the Earth's surface water is critical in a wide range of environmental studies, from evaluating the societal impacts of seasonal droughts and floods to the large-scale implications of climate change. Consequently, a large literature exists on the classification of water from satellite imagery. Yet, previous methods have been limited by 1) the spatial resolution of public satellite imagery, 2) classification schemes that operate at the pixel level, and 3) the need for multiple spectral bands. We advance the state-of-the-art by 1) using commercial imagery with panchromatic and multispectral resolutions of 30 cm and 1.2 m, respectively, 2) developing multiple fully convolutional neural networks (FCN) that can learn the morphological features of water bodies in addition to their spectral properties, and 3) FCN that can classify water even from panchromatic imagery. This study focuses on rivers in the Arctic, using images from the Quickbird, WorldView, and GeoEye satellites. Because no training data are available at such high resolutions, we construct those manually. First, we use the RGB, and NIR bands of the 8-band multispectral sensors. Those trained models all achieve excellent precision and recall over 90% on validation data, aided by on-the-fly preprocessing of the training data specific to satellite imagery. In a novel approach, we then use results from the multispectral model to generate training data for FCN that only require panchromatic imagery, of which considerably more is available. Despite the smaller feature space, these models still achieve a precision and recall of over 85%. We provide our open-source codes and trained model parameters to the remote sensing community, which paves the way to a wide range of environmental hydrology applications at vastly superior accuracies and 2 orders of magnitude higher spatial resolution than previously possible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
monster完成签到 ,获得积分10
3秒前
Stageruner完成签到,获得积分10
3秒前
胡茶茶完成签到 ,获得积分10
4秒前
pwang_lixin完成签到,获得积分10
4秒前
蓝刺完成签到,获得积分10
5秒前
小城故事完成签到,获得积分10
7秒前
你怎么睡得着觉完成签到,获得积分10
7秒前
7秒前
7秒前
蝈蝈完成签到,获得积分10
8秒前
阳佟若剑完成签到,获得积分10
8秒前
9秒前
大模型应助庾稀采纳,获得10
9秒前
勤恳的嚓茶完成签到,获得积分10
9秒前
科研王子完成签到,获得积分10
10秒前
LLL完成签到,获得积分10
11秒前
洁净斑马发布了新的文献求助10
11秒前
谦让汝燕完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
闪闪的斑马完成签到,获得积分10
14秒前
书生完成签到,获得积分10
14秒前
柳易槐完成签到,获得积分10
15秒前
pwang_ecust完成签到,获得积分10
15秒前
shuicaoxi完成签到,获得积分20
15秒前
hx完成签到 ,获得积分10
16秒前
务实时光完成签到,获得积分10
16秒前
HCCha完成签到,获得积分10
17秒前
17秒前
...完成签到 ,获得积分0
19秒前
暮晓见完成签到 ,获得积分10
19秒前
21秒前
wx发布了新的文献求助50
21秒前
Tonald Yang发布了新的文献求助10
21秒前
myg123完成签到 ,获得积分10
23秒前
Sean完成签到,获得积分10
25秒前
夏紫儿完成签到 ,获得积分10
25秒前
东方琉璃完成签到,获得积分10
26秒前
典雅的夜安完成签到,获得积分10
26秒前
KouZL完成签到,获得积分10
26秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015708
求助须知:如何正确求助?哪些是违规求助? 3555661
关于积分的说明 11318291
捐赠科研通 3288879
什么是DOI,文献DOI怎么找? 1812301
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027