Deep learning models for river classification at sub-meter resolutions from multispectral and panchromatic commercial satellite imagery

全色胶片 多光谱图像 遥感 卫星图像 卫星 计算机科学 光谱带 多光谱模式识别 像素 环境科学 光辉 卷积神经网络 人工智能 地质学 工程类 航空航天工程
作者
Joachim Moortgat,Ziwei Li,Michael Durand,I. M. Howat,Bidhyananda Yadav,Changlei Dai
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:282: 113279-113279 被引量:12
标识
DOI:10.1016/j.rse.2022.113279
摘要

Remote sensing of the Earth's surface water is critical in a wide range of environmental studies, from evaluating the societal impacts of seasonal droughts and floods to the large-scale implications of climate change. Consequently, a large literature exists on the classification of water from satellite imagery. Yet, previous methods have been limited by 1) the spatial resolution of public satellite imagery, 2) classification schemes that operate at the pixel level, and 3) the need for multiple spectral bands. We advance the state-of-the-art by 1) using commercial imagery with panchromatic and multispectral resolutions of 30 cm and 1.2 m, respectively, 2) developing multiple fully convolutional neural networks (FCN) that can learn the morphological features of water bodies in addition to their spectral properties, and 3) FCN that can classify water even from panchromatic imagery. This study focuses on rivers in the Arctic, using images from the Quickbird, WorldView, and GeoEye satellites. Because no training data are available at such high resolutions, we construct those manually. First, we use the RGB, and NIR bands of the 8-band multispectral sensors. Those trained models all achieve excellent precision and recall over 90% on validation data, aided by on-the-fly preprocessing of the training data specific to satellite imagery. In a novel approach, we then use results from the multispectral model to generate training data for FCN that only require panchromatic imagery, of which considerably more is available. Despite the smaller feature space, these models still achieve a precision and recall of over 85%. We provide our open-source codes and trained model parameters to the remote sensing community, which paves the way to a wide range of environmental hydrology applications at vastly superior accuracies and 2 orders of magnitude higher spatial resolution than previously possible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sushoushou发布了新的文献求助10
刚刚
1秒前
1秒前
学习发布了新的文献求助10
2秒前
beiest完成签到,获得积分10
2秒前
nyr发布了新的文献求助10
3秒前
酷波er应助枫桥夜泊采纳,获得10
3秒前
Dan发布了新的文献求助10
3秒前
科研通AI5应助11采纳,获得10
4秒前
tangsuyun发布了新的文献求助30
5秒前
科研通AI6应助QiuShuiCi采纳,获得10
6秒前
7秒前
7秒前
水水的完成签到 ,获得积分10
8秒前
9秒前
汉堡国王完成签到,获得积分10
9秒前
9秒前
12秒前
光亮的千亦完成签到,获得积分10
12秒前
aaa发布了新的文献求助10
12秒前
周久完成签到 ,获得积分10
13秒前
闹心发布了新的文献求助10
13秒前
14秒前
善学以致用应助llll采纳,获得10
16秒前
嗯哼完成签到 ,获得积分10
16秒前
17秒前
汤汤发布了新的文献求助50
19秒前
19秒前
胡小妹发布了新的文献求助10
19秒前
苏木发布了新的文献求助10
21秒前
小巧的傲松完成签到,获得积分10
21秒前
21秒前
23秒前
量子星尘发布了新的文献求助150
24秒前
25秒前
麒麟发布了新的文献求助10
26秒前
27秒前
27秒前
刘sc发布了新的文献求助10
29秒前
wawaeryu发布了新的文献求助30
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4915038
求助须知:如何正确求助?哪些是违规求助? 4189167
关于积分的说明 13010035
捐赠科研通 3958176
什么是DOI,文献DOI怎么找? 2170103
邀请新用户注册赠送积分活动 1188349
关于科研通互助平台的介绍 1096077