Deep learning models for river classification at sub-meter resolutions from multispectral and panchromatic commercial satellite imagery

全色胶片 多光谱图像 遥感 卫星图像 卫星 计算机科学 光谱带 多光谱模式识别 像素 环境科学 光辉 卷积神经网络 人工智能 地质学 工程类 航空航天工程
作者
Joachim Moortgat,Ziwei Li,Michael Durand,I. M. Howat,Bidhyananda Yadav,Changlei Dai
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:282: 113279-113279 被引量:12
标识
DOI:10.1016/j.rse.2022.113279
摘要

Remote sensing of the Earth's surface water is critical in a wide range of environmental studies, from evaluating the societal impacts of seasonal droughts and floods to the large-scale implications of climate change. Consequently, a large literature exists on the classification of water from satellite imagery. Yet, previous methods have been limited by 1) the spatial resolution of public satellite imagery, 2) classification schemes that operate at the pixel level, and 3) the need for multiple spectral bands. We advance the state-of-the-art by 1) using commercial imagery with panchromatic and multispectral resolutions of 30 cm and 1.2 m, respectively, 2) developing multiple fully convolutional neural networks (FCN) that can learn the morphological features of water bodies in addition to their spectral properties, and 3) FCN that can classify water even from panchromatic imagery. This study focuses on rivers in the Arctic, using images from the Quickbird, WorldView, and GeoEye satellites. Because no training data are available at such high resolutions, we construct those manually. First, we use the RGB, and NIR bands of the 8-band multispectral sensors. Those trained models all achieve excellent precision and recall over 90% on validation data, aided by on-the-fly preprocessing of the training data specific to satellite imagery. In a novel approach, we then use results from the multispectral model to generate training data for FCN that only require panchromatic imagery, of which considerably more is available. Despite the smaller feature space, these models still achieve a precision and recall of over 85%. We provide our open-source codes and trained model parameters to the remote sensing community, which paves the way to a wide range of environmental hydrology applications at vastly superior accuracies and 2 orders of magnitude higher spatial resolution than previously possible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
赖雅绿完成签到,获得积分10
2秒前
机灵夏云完成签到,获得积分10
3秒前
勤奋凡之完成签到 ,获得积分10
4秒前
4秒前
zhaowenxian完成签到,获得积分10
4秒前
alexisgood发布了新的文献求助10
7秒前
潘宋完成签到,获得积分10
7秒前
帮帮完成签到,获得积分10
7秒前
鹅帮逮完成签到,获得积分10
7秒前
TEY完成签到 ,获得积分10
9秒前
winifred完成签到 ,获得积分10
10秒前
10秒前
小珂呀完成签到,获得积分10
11秒前
运敬完成签到 ,获得积分10
11秒前
务实的绝悟完成签到,获得积分10
12秒前
壮观的思远完成签到,获得积分10
12秒前
zuoyou完成签到,获得积分10
14秒前
15秒前
子车茗应助ytli采纳,获得20
15秒前
whisper完成签到,获得积分10
15秒前
毕业发布了新的文献求助10
15秒前
li完成签到,获得积分10
16秒前
Cell完成签到,获得积分10
17秒前
cc完成签到,获得积分10
17秒前
18秒前
18秒前
天天向上完成签到 ,获得积分10
19秒前
19秒前
DXM完成签到 ,获得积分10
19秒前
20秒前
20秒前
狂野乌冬面完成签到 ,获得积分10
20秒前
一人完成签到,获得积分10
20秒前
Pwrry完成签到,获得积分10
22秒前
小女子常戚戚完成签到,获得积分10
22秒前
24秒前
sxd发布了新的文献求助10
24秒前
澎鱼盐完成签到,获得积分10
24秒前
猪猪hero应助毕业采纳,获得10
24秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736805
求助须知:如何正确求助?哪些是违规求助? 3280699
关于积分的说明 10020699
捐赠科研通 2997414
什么是DOI,文献DOI怎么找? 1644554
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749668