Learning global dependencies and multi-semantics within heterogeneous graph for predicting disease-related lncRNAs

计算机科学 语义学(计算机科学) 路径(计算) 图形 节点(物理) 相互依存 理论计算机科学 人工智能 计算机网络 政治学 结构工程 工程类 程序设计语言 法学
作者
Ping Xuan,Shuai Wang,Hui Cui,Yue Zhao,Tiangang Zhang,Peiliang Wu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:7
标识
DOI:10.1093/bib/bbac361
摘要

Long noncoding RNAs (lncRNAs) play an important role in the occurrence and development of diseases. Predicting disease-related lncRNAs can help to understand the pathogenesis of diseases deeply. The existing methods mainly rely on multi-source data related to lncRNAs and diseases when predicting the associations between lncRNAs and diseases. There are interdependencies among node attributes in a heterogeneous graph composed of all lncRNAs, diseases and micro RNAs. The meta-paths composed of various connections between them also contain rich semantic information. However, the existing methods neglect to integrate attribute information of intermediate nodes in meta-paths.We propose a novel association prediction model, GSMV, to learn and deeply integrate the global dependencies, semantic information of meta-paths and node-pair multi-view features related to lncRNAs and diseases. We firstly formulate the global representations of the lncRNA and disease nodes by establishing a self-attention mechanism to capture and learn the global dependencies among node attributes. Second, starting from the lncRNA and disease nodes, respectively, multiple meta-pathways are established to reveal different semantic information. Considering that each meta-path contains specific semantics and has multiple meta-path instances which have different contributions to revealing meta-path semantics, we design a graph neural network based module which consists of a meta-path instance encoding strategy and two novel attention mechanisms. The proposed meta-path instance encoding strategy is used to learn the contextual connections between nodes within a meta-path instance. One of the two new attention mechanisms is at the meta-path instance level, which learns rich and informative meta-path instances. The other attention mechanism integrates various semantic information from multiple meta-paths to learn the semantic representation of lncRNA and disease nodes. Finally, a dilated convolution-based learning module with adjustable receptive fields is proposed to learn multi-view features of lncRNA-disease node pairs. The experimental results prove that our method outperforms seven state-of-the-art comparing methods for lncRNA-disease association prediction. Ablation experiments demonstrate the contributions of the proposed global representation learning, semantic information learning, pairwise multi-view feature learning and the meta-path instance encoding strategy. Case studies on three cancers further demonstrate our method's ability to discover potential disease-related lncRNA candidates.zhang@hlju.edu.cn or peiliangwu@ysu.edu.cn.Supplementary data are available at Briefings in Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kai_完成签到,获得积分10
1秒前
snowdrift完成签到,获得积分10
1秒前
valiant完成签到,获得积分10
1秒前
啦啦啦啦完成签到,获得积分10
1秒前
山山完成签到 ,获得积分10
2秒前
jodie0105完成签到,获得积分10
3秒前
星辰大海应助Silver采纳,获得10
3秒前
小二郎应助c445507405采纳,获得10
3秒前
老迟到的雪糕完成签到,获得积分10
4秒前
怕黑书翠完成签到,获得积分10
4秒前
4秒前
4秒前
英俊芷完成签到 ,获得积分10
4秒前
羽言完成签到,获得积分10
4秒前
盆栽完成签到,获得积分10
4秒前
xeauyca35完成签到,获得积分10
5秒前
mg完成签到,获得积分10
5秒前
pluto应助犹豫的觅云采纳,获得10
5秒前
Yen完成签到,获得积分10
5秒前
ye完成签到,获得积分10
5秒前
5秒前
方文浩关注了科研通微信公众号
6秒前
沉默的宛筠完成签到,获得积分10
6秒前
右右完成签到,获得积分10
7秒前
feishxixi完成签到,获得积分10
7秒前
YinHy完成签到,获得积分10
8秒前
小刘完成签到,获得积分10
8秒前
九点半上课了完成签到,获得积分10
8秒前
英俊的铭应助开心的小熊采纳,获得20
8秒前
9秒前
笑点低的紫完成签到,获得积分10
10秒前
晚风完成签到,获得积分10
11秒前
leishenwang完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
Sheryl完成签到,获得积分10
12秒前
缓慢晟睿完成签到,获得积分10
12秒前
细心沛山完成签到,获得积分10
12秒前
SYY完成签到,获得积分10
12秒前
Creamsoda完成签到,获得积分10
13秒前
深海鳕鱼完成签到,获得积分10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986586
求助须知:如何正确求助?哪些是违规求助? 3529069
关于积分的说明 11242999
捐赠科研通 3267514
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881175
科研通“疑难数据库(出版商)”最低求助积分说明 808582