Learning global dependencies and multi-semantics within heterogeneous graph for predicting disease-related lncRNAs

计算机科学 语义学(计算机科学) 路径(计算) 图形 节点(物理) 相互依存 理论计算机科学 人工智能 计算机网络 政治学 结构工程 工程类 程序设计语言 法学
作者
Ping Xuan,Shuai Wang,Hui Cui,Yue Zhao,Tiangang Zhang,Peiliang Wu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:7
标识
DOI:10.1093/bib/bbac361
摘要

Long noncoding RNAs (lncRNAs) play an important role in the occurrence and development of diseases. Predicting disease-related lncRNAs can help to understand the pathogenesis of diseases deeply. The existing methods mainly rely on multi-source data related to lncRNAs and diseases when predicting the associations between lncRNAs and diseases. There are interdependencies among node attributes in a heterogeneous graph composed of all lncRNAs, diseases and micro RNAs. The meta-paths composed of various connections between them also contain rich semantic information. However, the existing methods neglect to integrate attribute information of intermediate nodes in meta-paths.We propose a novel association prediction model, GSMV, to learn and deeply integrate the global dependencies, semantic information of meta-paths and node-pair multi-view features related to lncRNAs and diseases. We firstly formulate the global representations of the lncRNA and disease nodes by establishing a self-attention mechanism to capture and learn the global dependencies among node attributes. Second, starting from the lncRNA and disease nodes, respectively, multiple meta-pathways are established to reveal different semantic information. Considering that each meta-path contains specific semantics and has multiple meta-path instances which have different contributions to revealing meta-path semantics, we design a graph neural network based module which consists of a meta-path instance encoding strategy and two novel attention mechanisms. The proposed meta-path instance encoding strategy is used to learn the contextual connections between nodes within a meta-path instance. One of the two new attention mechanisms is at the meta-path instance level, which learns rich and informative meta-path instances. The other attention mechanism integrates various semantic information from multiple meta-paths to learn the semantic representation of lncRNA and disease nodes. Finally, a dilated convolution-based learning module with adjustable receptive fields is proposed to learn multi-view features of lncRNA-disease node pairs. The experimental results prove that our method outperforms seven state-of-the-art comparing methods for lncRNA-disease association prediction. Ablation experiments demonstrate the contributions of the proposed global representation learning, semantic information learning, pairwise multi-view feature learning and the meta-path instance encoding strategy. Case studies on three cancers further demonstrate our method's ability to discover potential disease-related lncRNA candidates.zhang@hlju.edu.cn or peiliangwu@ysu.edu.cn.Supplementary data are available at Briefings in Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gdh发布了新的文献求助10
刚刚
超帅寻双发布了新的文献求助10
刚刚
浮游应助zyf采纳,获得30
2秒前
忧伤的慕梅完成签到 ,获得积分10
2秒前
2秒前
watermelon完成签到,获得积分10
2秒前
俊逸沅完成签到,获得积分10
3秒前
Akim应助wb采纳,获得10
3秒前
会飞的史迪奇完成签到,获得积分10
4秒前
5秒前
大黄完成签到,获得积分10
5秒前
斯文可仁完成签到,获得积分10
5秒前
6秒前
Lolo发布了新的文献求助10
6秒前
cjc完成签到,获得积分10
6秒前
8秒前
美女完成签到,获得积分10
8秒前
XX发布了新的文献求助10
8秒前
YuZhang发布了新的文献求助10
9秒前
JJ发布了新的文献求助10
9秒前
林宇发布了新的文献求助10
11秒前
Hunter1023完成签到,获得积分10
11秒前
SciGPT应助ao采纳,获得10
12秒前
落雪完成签到 ,获得积分10
12秒前
linya发布了新的文献求助10
13秒前
lele发布了新的文献求助10
13秒前
13秒前
13秒前
15秒前
鱼鱼鱼完成签到,获得积分10
16秒前
16秒前
浮游应助几两采纳,获得10
17秒前
顾矜应助微信研友采纳,获得10
17秒前
17秒前
18秒前
18秒前
南海子发布了新的文献求助10
19秒前
ZOE完成签到,获得积分0
20秒前
jklh发布了新的文献求助10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5460885
求助须知:如何正确求助?哪些是违规求助? 4565924
关于积分的说明 14302173
捐赠科研通 4491506
什么是DOI,文献DOI怎么找? 2460346
邀请新用户注册赠送积分活动 1449679
关于科研通互助平台的介绍 1425492