Learning global dependencies and multi-semantics within heterogeneous graph for predicting disease-related lncRNAs

计算机科学 语义学(计算机科学) 路径(计算) 图形 节点(物理) 相互依存 理论计算机科学 人工智能 计算机网络 政治学 结构工程 工程类 程序设计语言 法学
作者
Ping Xuan,Shuai Wang,Hui Cui,Yue Zhao,Tiangang Zhang,Peiliang Wu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:7
标识
DOI:10.1093/bib/bbac361
摘要

Long noncoding RNAs (lncRNAs) play an important role in the occurrence and development of diseases. Predicting disease-related lncRNAs can help to understand the pathogenesis of diseases deeply. The existing methods mainly rely on multi-source data related to lncRNAs and diseases when predicting the associations between lncRNAs and diseases. There are interdependencies among node attributes in a heterogeneous graph composed of all lncRNAs, diseases and micro RNAs. The meta-paths composed of various connections between them also contain rich semantic information. However, the existing methods neglect to integrate attribute information of intermediate nodes in meta-paths.We propose a novel association prediction model, GSMV, to learn and deeply integrate the global dependencies, semantic information of meta-paths and node-pair multi-view features related to lncRNAs and diseases. We firstly formulate the global representations of the lncRNA and disease nodes by establishing a self-attention mechanism to capture and learn the global dependencies among node attributes. Second, starting from the lncRNA and disease nodes, respectively, multiple meta-pathways are established to reveal different semantic information. Considering that each meta-path contains specific semantics and has multiple meta-path instances which have different contributions to revealing meta-path semantics, we design a graph neural network based module which consists of a meta-path instance encoding strategy and two novel attention mechanisms. The proposed meta-path instance encoding strategy is used to learn the contextual connections between nodes within a meta-path instance. One of the two new attention mechanisms is at the meta-path instance level, which learns rich and informative meta-path instances. The other attention mechanism integrates various semantic information from multiple meta-paths to learn the semantic representation of lncRNA and disease nodes. Finally, a dilated convolution-based learning module with adjustable receptive fields is proposed to learn multi-view features of lncRNA-disease node pairs. The experimental results prove that our method outperforms seven state-of-the-art comparing methods for lncRNA-disease association prediction. Ablation experiments demonstrate the contributions of the proposed global representation learning, semantic information learning, pairwise multi-view feature learning and the meta-path instance encoding strategy. Case studies on three cancers further demonstrate our method's ability to discover potential disease-related lncRNA candidates.zhang@hlju.edu.cn or peiliangwu@ysu.edu.cn.Supplementary data are available at Briefings in Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
学术牛马完成签到,获得积分10
3秒前
友好的南风完成签到,获得积分10
3秒前
棕色垂耳兔完成签到 ,获得积分10
6秒前
酷炫的大碗完成签到,获得积分10
6秒前
7秒前
平凡世界完成签到 ,获得积分10
8秒前
JIA完成签到 ,获得积分10
8秒前
8秒前
汉堡包应助斯文的傲珊采纳,获得10
9秒前
青青完成签到 ,获得积分10
15秒前
乐观健柏完成签到,获得积分10
16秒前
情怀应助左惋庭采纳,获得10
16秒前
爱静静应助周凡淇采纳,获得30
17秒前
17秒前
八点必起完成签到,获得积分10
17秒前
你我山巅自相逢完成签到 ,获得积分10
18秒前
传奇3应助蓬蒿人采纳,获得10
21秒前
22秒前
bird完成签到,获得积分10
23秒前
赖建琛完成签到 ,获得积分10
24秒前
yiyao完成签到 ,获得积分10
24秒前
shlw完成签到,获得积分10
27秒前
27秒前
yifan92完成签到,获得积分10
30秒前
果冻完成签到 ,获得积分10
32秒前
心悦SCI完成签到,获得积分10
33秒前
34秒前
应俊完成签到 ,获得积分10
37秒前
风趣的南霜完成签到,获得积分10
38秒前
玄魁完成签到 ,获得积分10
39秒前
39秒前
小章完成签到,获得积分10
40秒前
ranj完成签到,获得积分10
40秒前
静静发布了新的文献求助10
40秒前
CL发布了新的文献求助10
40秒前
wxy完成签到,获得积分10
41秒前
41秒前
44秒前
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304405
求助须知:如何正确求助?哪些是违规求助? 4450962
关于积分的说明 13850152
捐赠科研通 4337939
什么是DOI,文献DOI怎么找? 2381725
邀请新用户注册赠送积分活动 1376759
关于科研通互助平台的介绍 1343885