Learning global dependencies and multi-semantics within heterogeneous graph for predicting disease-related lncRNAs

计算机科学 语义学(计算机科学) 路径(计算) 图形 节点(物理) 相互依存 理论计算机科学 人工智能 计算机网络 政治学 结构工程 工程类 程序设计语言 法学
作者
Ping Xuan,Shuai Wang,Hui Cui,Yue Zhao,Tiangang Zhang,Peiliang Wu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:7
标识
DOI:10.1093/bib/bbac361
摘要

Long noncoding RNAs (lncRNAs) play an important role in the occurrence and development of diseases. Predicting disease-related lncRNAs can help to understand the pathogenesis of diseases deeply. The existing methods mainly rely on multi-source data related to lncRNAs and diseases when predicting the associations between lncRNAs and diseases. There are interdependencies among node attributes in a heterogeneous graph composed of all lncRNAs, diseases and micro RNAs. The meta-paths composed of various connections between them also contain rich semantic information. However, the existing methods neglect to integrate attribute information of intermediate nodes in meta-paths.We propose a novel association prediction model, GSMV, to learn and deeply integrate the global dependencies, semantic information of meta-paths and node-pair multi-view features related to lncRNAs and diseases. We firstly formulate the global representations of the lncRNA and disease nodes by establishing a self-attention mechanism to capture and learn the global dependencies among node attributes. Second, starting from the lncRNA and disease nodes, respectively, multiple meta-pathways are established to reveal different semantic information. Considering that each meta-path contains specific semantics and has multiple meta-path instances which have different contributions to revealing meta-path semantics, we design a graph neural network based module which consists of a meta-path instance encoding strategy and two novel attention mechanisms. The proposed meta-path instance encoding strategy is used to learn the contextual connections between nodes within a meta-path instance. One of the two new attention mechanisms is at the meta-path instance level, which learns rich and informative meta-path instances. The other attention mechanism integrates various semantic information from multiple meta-paths to learn the semantic representation of lncRNA and disease nodes. Finally, a dilated convolution-based learning module with adjustable receptive fields is proposed to learn multi-view features of lncRNA-disease node pairs. The experimental results prove that our method outperforms seven state-of-the-art comparing methods for lncRNA-disease association prediction. Ablation experiments demonstrate the contributions of the proposed global representation learning, semantic information learning, pairwise multi-view feature learning and the meta-path instance encoding strategy. Case studies on three cancers further demonstrate our method's ability to discover potential disease-related lncRNA candidates.zhang@hlju.edu.cn or peiliangwu@ysu.edu.cn.Supplementary data are available at Briefings in Bioinformatics online.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyyyy发布了新的文献求助10
刚刚
茉莉猫哟完成签到,获得积分10
刚刚
无奈的天玉完成签到,获得积分10
1秒前
失眠店员发布了新的文献求助10
1秒前
甜蜜的振家完成签到,获得积分10
1秒前
蛋堡完成签到 ,获得积分10
1秒前
现代雁桃完成签到,获得积分10
1秒前
高CA完成签到,获得积分10
2秒前
机灵的幻灵完成签到 ,获得积分10
3秒前
888应助Ttimer采纳,获得50
3秒前
洛希极限完成签到,获得积分10
3秒前
山丘完成签到,获得积分10
4秒前
4秒前
5秒前
自由凌丝完成签到,获得积分10
5秒前
陽15完成签到,获得积分10
7秒前
GAW完成签到,获得积分10
8秒前
青阳完成签到,获得积分10
8秒前
超级的听南关注了科研通微信公众号
8秒前
嘿嘿应助yyyyy采纳,获得10
10秒前
白夜完成签到 ,获得积分10
11秒前
H哈完成签到,获得积分10
11秒前
1033sry完成签到,获得积分10
12秒前
13秒前
luoshikun完成签到,获得积分10
13秒前
1661321476完成签到,获得积分10
13秒前
14秒前
16秒前
16秒前
小呆呆完成签到 ,获得积分10
17秒前
今后应助赵云采纳,获得10
17秒前
zj完成签到,获得积分10
17秒前
啊大大哇完成签到,获得积分10
17秒前
科研顺利发布了新的文献求助10
18秒前
重要忆秋完成签到,获得积分10
18秒前
柠檬不萌发布了新的文献求助20
18秒前
lin发布了新的文献求助10
20秒前
吕佳蔚完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
20秒前
香蕉觅云应助心行采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600096
求助须知:如何正确求助?哪些是违规求助? 4685809
关于积分的说明 14839646
捐赠科研通 4674865
什么是DOI,文献DOI怎么找? 2538486
邀请新用户注册赠送积分活动 1505659
关于科研通互助平台的介绍 1471109