亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Learning global dependencies and multi-semantics within heterogeneous graph for predicting disease-related lncRNAs

计算机科学 语义学(计算机科学) 路径(计算) 图形 节点(物理) 相互依存 理论计算机科学 人工智能 计算机网络 政治学 结构工程 工程类 程序设计语言 法学
作者
Ping Xuan,Shuai Wang,Hui Cui,Yue Zhao,Tiangang Zhang,Peiliang Wu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:7
标识
DOI:10.1093/bib/bbac361
摘要

Long noncoding RNAs (lncRNAs) play an important role in the occurrence and development of diseases. Predicting disease-related lncRNAs can help to understand the pathogenesis of diseases deeply. The existing methods mainly rely on multi-source data related to lncRNAs and diseases when predicting the associations between lncRNAs and diseases. There are interdependencies among node attributes in a heterogeneous graph composed of all lncRNAs, diseases and micro RNAs. The meta-paths composed of various connections between them also contain rich semantic information. However, the existing methods neglect to integrate attribute information of intermediate nodes in meta-paths.We propose a novel association prediction model, GSMV, to learn and deeply integrate the global dependencies, semantic information of meta-paths and node-pair multi-view features related to lncRNAs and diseases. We firstly formulate the global representations of the lncRNA and disease nodes by establishing a self-attention mechanism to capture and learn the global dependencies among node attributes. Second, starting from the lncRNA and disease nodes, respectively, multiple meta-pathways are established to reveal different semantic information. Considering that each meta-path contains specific semantics and has multiple meta-path instances which have different contributions to revealing meta-path semantics, we design a graph neural network based module which consists of a meta-path instance encoding strategy and two novel attention mechanisms. The proposed meta-path instance encoding strategy is used to learn the contextual connections between nodes within a meta-path instance. One of the two new attention mechanisms is at the meta-path instance level, which learns rich and informative meta-path instances. The other attention mechanism integrates various semantic information from multiple meta-paths to learn the semantic representation of lncRNA and disease nodes. Finally, a dilated convolution-based learning module with adjustable receptive fields is proposed to learn multi-view features of lncRNA-disease node pairs. The experimental results prove that our method outperforms seven state-of-the-art comparing methods for lncRNA-disease association prediction. Ablation experiments demonstrate the contributions of the proposed global representation learning, semantic information learning, pairwise multi-view feature learning and the meta-path instance encoding strategy. Case studies on three cancers further demonstrate our method's ability to discover potential disease-related lncRNA candidates.zhang@hlju.edu.cn or peiliangwu@ysu.edu.cn.Supplementary data are available at Briefings in Bioinformatics online.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Shonso发布了新的文献求助30
3秒前
16秒前
25秒前
lq发布了新的文献求助10
32秒前
小超人完成签到 ,获得积分10
34秒前
43秒前
54秒前
54秒前
lh发布了新的文献求助10
58秒前
1分钟前
lh完成签到,获得积分10
1分钟前
Akim应助百里幻竹采纳,获得10
1分钟前
1分钟前
1分钟前
百里幻竹发布了新的文献求助10
1分钟前
1分钟前
CJH104完成签到 ,获得积分10
1分钟前
1分钟前
东方天奇完成签到 ,获得积分10
1分钟前
2分钟前
leslie应助晓奕采纳,获得10
2分钟前
2分钟前
Shonso发布了新的文献求助30
2分钟前
2分钟前
2分钟前
貔貅完成签到,获得积分10
2分钟前
箫笛完成签到 ,获得积分10
2分钟前
2分钟前
雪鱼发布了新的文献求助30
3分钟前
olaolaby完成签到,获得积分10
3分钟前
Doctor_jie完成签到 ,获得积分10
3分钟前
咱妈糊饼完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
olaolaby发布了新的文献求助10
3分钟前
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
传奇3应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538682
求助须知:如何正确求助?哪些是违规求助? 4625719
关于积分的说明 14596795
捐赠科研通 4566401
什么是DOI,文献DOI怎么找? 2503277
邀请新用户注册赠送积分活动 1481388
关于科研通互助平台的介绍 1452746