已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Learning global dependencies and multi-semantics within heterogeneous graph for predicting disease-related lncRNAs

计算机科学 语义学(计算机科学) 路径(计算) 图形 节点(物理) 相互依存 理论计算机科学 人工智能 计算机网络 政治学 结构工程 工程类 程序设计语言 法学
作者
Ping Xuan,Shuai Wang,Hui Cui,Yue Zhao,Tiangang Zhang,Peiliang Wu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:7
标识
DOI:10.1093/bib/bbac361
摘要

Long noncoding RNAs (lncRNAs) play an important role in the occurrence and development of diseases. Predicting disease-related lncRNAs can help to understand the pathogenesis of diseases deeply. The existing methods mainly rely on multi-source data related to lncRNAs and diseases when predicting the associations between lncRNAs and diseases. There are interdependencies among node attributes in a heterogeneous graph composed of all lncRNAs, diseases and micro RNAs. The meta-paths composed of various connections between them also contain rich semantic information. However, the existing methods neglect to integrate attribute information of intermediate nodes in meta-paths.We propose a novel association prediction model, GSMV, to learn and deeply integrate the global dependencies, semantic information of meta-paths and node-pair multi-view features related to lncRNAs and diseases. We firstly formulate the global representations of the lncRNA and disease nodes by establishing a self-attention mechanism to capture and learn the global dependencies among node attributes. Second, starting from the lncRNA and disease nodes, respectively, multiple meta-pathways are established to reveal different semantic information. Considering that each meta-path contains specific semantics and has multiple meta-path instances which have different contributions to revealing meta-path semantics, we design a graph neural network based module which consists of a meta-path instance encoding strategy and two novel attention mechanisms. The proposed meta-path instance encoding strategy is used to learn the contextual connections between nodes within a meta-path instance. One of the two new attention mechanisms is at the meta-path instance level, which learns rich and informative meta-path instances. The other attention mechanism integrates various semantic information from multiple meta-paths to learn the semantic representation of lncRNA and disease nodes. Finally, a dilated convolution-based learning module with adjustable receptive fields is proposed to learn multi-view features of lncRNA-disease node pairs. The experimental results prove that our method outperforms seven state-of-the-art comparing methods for lncRNA-disease association prediction. Ablation experiments demonstrate the contributions of the proposed global representation learning, semantic information learning, pairwise multi-view feature learning and the meta-path instance encoding strategy. Case studies on three cancers further demonstrate our method's ability to discover potential disease-related lncRNA candidates.zhang@hlju.edu.cn or peiliangwu@ysu.edu.cn.Supplementary data are available at Briefings in Bioinformatics online.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
慕青应助1111采纳,获得10
刚刚
堡主完成签到,获得积分10
2秒前
pililili发布了新的文献求助10
4秒前
4秒前
阿姨洗铁路完成签到 ,获得积分10
4秒前
5秒前
超级微笑完成签到 ,获得积分10
5秒前
xun发布了新的文献求助10
6秒前
6秒前
shuxiansheng发布了新的文献求助10
8秒前
王一生完成签到,获得积分10
8秒前
宋佳完成签到,获得积分10
8秒前
wx2360ouc完成签到 ,获得积分10
9秒前
隐形的谷槐完成签到,获得积分10
9秒前
舒服的井完成签到,获得积分10
10秒前
www完成签到 ,获得积分10
12秒前
yechengjie发布了新的文献求助50
13秒前
cuber完成签到 ,获得积分10
13秒前
CHEN完成签到 ,获得积分10
15秒前
ABJ完成签到 ,获得积分10
16秒前
Nomb1发布了新的文献求助10
18秒前
wangye驳回了yznfly应助
18秒前
乐乐应助明晨采纳,获得20
22秒前
23秒前
23秒前
24秒前
25秒前
cen完成签到,获得积分10
28秒前
Andy完成签到,获得积分10
29秒前
shuxiansheng完成签到,获得积分10
29秒前
1111发布了新的文献求助10
30秒前
顺顺顺顺完成签到,获得积分10
31秒前
lijunliang完成签到,获得积分10
32秒前
32秒前
mdomse2109发布了新的文献求助10
33秒前
hbz完成签到,获得积分10
34秒前
FSDF发布了新的文献求助10
36秒前
Bugs完成签到,获得积分10
43秒前
44秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502464
求助须知:如何正确求助?哪些是违规求助? 4598341
关于积分的说明 14463804
捐赠科研通 4531872
什么是DOI,文献DOI怎么找? 2483718
邀请新用户注册赠送积分活动 1466934
关于科研通互助平台的介绍 1439567