Learning global dependencies and multi-semantics within heterogeneous graph for predicting disease-related lncRNAs

计算机科学 语义学(计算机科学) 路径(计算) 图形 节点(物理) 相互依存 理论计算机科学 人工智能 计算机网络 政治学 结构工程 工程类 程序设计语言 法学
作者
Ping Xuan,Shuai Wang,Hui Cui,Yue Zhao,Tiangang Zhang,Peiliang Wu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:7
标识
DOI:10.1093/bib/bbac361
摘要

Long noncoding RNAs (lncRNAs) play an important role in the occurrence and development of diseases. Predicting disease-related lncRNAs can help to understand the pathogenesis of diseases deeply. The existing methods mainly rely on multi-source data related to lncRNAs and diseases when predicting the associations between lncRNAs and diseases. There are interdependencies among node attributes in a heterogeneous graph composed of all lncRNAs, diseases and micro RNAs. The meta-paths composed of various connections between them also contain rich semantic information. However, the existing methods neglect to integrate attribute information of intermediate nodes in meta-paths.We propose a novel association prediction model, GSMV, to learn and deeply integrate the global dependencies, semantic information of meta-paths and node-pair multi-view features related to lncRNAs and diseases. We firstly formulate the global representations of the lncRNA and disease nodes by establishing a self-attention mechanism to capture and learn the global dependencies among node attributes. Second, starting from the lncRNA and disease nodes, respectively, multiple meta-pathways are established to reveal different semantic information. Considering that each meta-path contains specific semantics and has multiple meta-path instances which have different contributions to revealing meta-path semantics, we design a graph neural network based module which consists of a meta-path instance encoding strategy and two novel attention mechanisms. The proposed meta-path instance encoding strategy is used to learn the contextual connections between nodes within a meta-path instance. One of the two new attention mechanisms is at the meta-path instance level, which learns rich and informative meta-path instances. The other attention mechanism integrates various semantic information from multiple meta-paths to learn the semantic representation of lncRNA and disease nodes. Finally, a dilated convolution-based learning module with adjustable receptive fields is proposed to learn multi-view features of lncRNA-disease node pairs. The experimental results prove that our method outperforms seven state-of-the-art comparing methods for lncRNA-disease association prediction. Ablation experiments demonstrate the contributions of the proposed global representation learning, semantic information learning, pairwise multi-view feature learning and the meta-path instance encoding strategy. Case studies on three cancers further demonstrate our method's ability to discover potential disease-related lncRNA candidates.zhang@hlju.edu.cn or peiliangwu@ysu.edu.cn.Supplementary data are available at Briefings in Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助斯文芷荷采纳,获得10
刚刚
1秒前
2鱼发布了新的文献求助10
2秒前
SYLH应助畅快的谷梦采纳,获得10
3秒前
mingjie发布了新的文献求助10
3秒前
Akim应助克里斯就是逊啦采纳,获得10
3秒前
越幸运完成签到 ,获得积分10
4秒前
young完成签到 ,获得积分10
4秒前
天天快乐应助成就的烧鹅采纳,获得10
5秒前
cora发布了新的文献求助10
5秒前
诚心的不斜完成签到,获得积分10
6秒前
bono完成签到 ,获得积分10
6秒前
6秒前
7秒前
又要起名字关注了科研通微信公众号
8秒前
可爱的函函应助su采纳,获得10
8秒前
9秒前
澳澳完成签到,获得积分10
10秒前
10秒前
善学以致用应助纯真抽屉采纳,获得10
11秒前
11秒前
笑笑发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
14秒前
Hello应助cora采纳,获得10
14秒前
汉唐精彩完成签到,获得积分10
15秒前
15秒前
16秒前
田茂青完成签到,获得积分10
16秒前
damian发布了新的文献求助30
16秒前
16秒前
聪明芒果完成签到,获得积分10
16秒前
Vvvvvvv应助虫二先生采纳,获得10
16秒前
西大研究生完成签到 ,获得积分10
16秒前
17秒前
17秒前
呆呆完成签到,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794