已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Learning global dependencies and multi-semantics within heterogeneous graph for predicting disease-related lncRNAs

计算机科学 语义学(计算机科学) 路径(计算) 图形 节点(物理) 相互依存 理论计算机科学 人工智能 计算机网络 政治学 结构工程 工程类 程序设计语言 法学
作者
Ping Xuan,Shuai Wang,Hui Cui,Yue Zhao,Tiangang Zhang,Peiliang Wu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:7
标识
DOI:10.1093/bib/bbac361
摘要

Long noncoding RNAs (lncRNAs) play an important role in the occurrence and development of diseases. Predicting disease-related lncRNAs can help to understand the pathogenesis of diseases deeply. The existing methods mainly rely on multi-source data related to lncRNAs and diseases when predicting the associations between lncRNAs and diseases. There are interdependencies among node attributes in a heterogeneous graph composed of all lncRNAs, diseases and micro RNAs. The meta-paths composed of various connections between them also contain rich semantic information. However, the existing methods neglect to integrate attribute information of intermediate nodes in meta-paths.We propose a novel association prediction model, GSMV, to learn and deeply integrate the global dependencies, semantic information of meta-paths and node-pair multi-view features related to lncRNAs and diseases. We firstly formulate the global representations of the lncRNA and disease nodes by establishing a self-attention mechanism to capture and learn the global dependencies among node attributes. Second, starting from the lncRNA and disease nodes, respectively, multiple meta-pathways are established to reveal different semantic information. Considering that each meta-path contains specific semantics and has multiple meta-path instances which have different contributions to revealing meta-path semantics, we design a graph neural network based module which consists of a meta-path instance encoding strategy and two novel attention mechanisms. The proposed meta-path instance encoding strategy is used to learn the contextual connections between nodes within a meta-path instance. One of the two new attention mechanisms is at the meta-path instance level, which learns rich and informative meta-path instances. The other attention mechanism integrates various semantic information from multiple meta-paths to learn the semantic representation of lncRNA and disease nodes. Finally, a dilated convolution-based learning module with adjustable receptive fields is proposed to learn multi-view features of lncRNA-disease node pairs. The experimental results prove that our method outperforms seven state-of-the-art comparing methods for lncRNA-disease association prediction. Ablation experiments demonstrate the contributions of the proposed global representation learning, semantic information learning, pairwise multi-view feature learning and the meta-path instance encoding strategy. Case studies on three cancers further demonstrate our method's ability to discover potential disease-related lncRNA candidates.zhang@hlju.edu.cn or peiliangwu@ysu.edu.cn.Supplementary data are available at Briefings in Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不安的裘完成签到 ,获得积分10
6秒前
Leofar完成签到 ,获得积分10
7秒前
7秒前
9秒前
糊涂的芒果应助kjding采纳,获得10
12秒前
杳鸢完成签到,获得积分0
14秒前
拂晓发布了新的文献求助10
14秒前
daishuheng完成签到 ,获得积分10
14秒前
Chloe完成签到 ,获得积分10
15秒前
英姑应助Dr.Joseph采纳,获得10
15秒前
17秒前
23秒前
24秒前
研友_Z6Qrbn完成签到,获得积分10
24秒前
刘晚柠完成签到 ,获得积分10
25秒前
王王完成签到,获得积分10
25秒前
guangwow发布了新的文献求助10
27秒前
西瓜刀完成签到 ,获得积分10
27秒前
kitty完成签到 ,获得积分10
28秒前
dichloro发布了新的文献求助10
28秒前
kjding发布了新的文献求助10
29秒前
吴宵完成签到,获得积分10
31秒前
31秒前
34秒前
科研通AI2S应助漫漫采纳,获得10
35秒前
jianghs完成签到,获得积分0
35秒前
37秒前
囤板栗的松鼠完成签到 ,获得积分10
37秒前
不与仙同完成签到 ,获得积分10
39秒前
41秒前
刻苦的溪流完成签到,获得积分10
42秒前
yx完成签到,获得积分10
43秒前
彭于晏应助柴柴采纳,获得10
51秒前
王王发布了新的文献求助10
53秒前
54秒前
ldysaber完成签到,获得积分10
54秒前
江离完成签到 ,获得积分10
55秒前
56秒前
luchen发布了新的文献求助10
57秒前
YYDS54发布了新的文献求助30
1分钟前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207659
求助须知:如何正确求助?哪些是违规求助? 2856984
关于积分的说明 8108031
捐赠科研通 2522482
什么是DOI,文献DOI怎么找? 1355756
科研通“疑难数据库(出版商)”最低求助积分说明 642234
邀请新用户注册赠送积分活动 613602