Indirect nitrous oxide emission factors of fluvial networks can be predicted by dissolved organic carbon and nitrate from local to global scales

一氧化二氮 温室气体 河流 环境科学 硝酸盐 环境化学 反硝化 溶解有机碳 溪流 氮气 水文学(农业) 大气科学 生态学 化学 地质学 古生物学 有机化学 构造盆地 生物 计算机网络 岩土工程 计算机科学
作者
Junfeng Wang,Gongqin Wang,Sibo Zhang,Yuan Xin,Chenrun Jiang,Shaoda Liu,Xiaojia He,William H. McDowell,Xinghui Xia
出处
期刊:Global Change Biology [Wiley]
卷期号:28 (24): 7270-7285 被引量:30
标识
DOI:10.1111/gcb.16458
摘要

Streams and rivers are important sources of nitrous oxide (N2 O), a powerful greenhouse gas. Estimating global riverine N2 O emissions is critical for the assessment of anthropogenic N2 O emission inventories. The indirect N2 O emission factor (EF5r ) model, one of the bottom-up approaches, adopts a fixed EF5r value to estimate riverine N2 O emissions based on IPCC methodology. However, the estimates have considerable uncertainty due to the large spatiotemporal variations in EF5r values. Factors regulating EF5r are poorly understood at the global scale. Here, we combine 4-year in situ observations across rivers of different land use types in China, with a global meta-analysis over six continents, to explore the spatiotemporal variations and controls on EF5r values. Our results show that the EF5r values in China and other regions with high N loads are lower than those for regions with lower N loads. Although the global mean EF5r value is comparable to the IPCC default value, the global EF5r values are highly skewed with large variations, indicating that adopting region-specific EF5r values rather than revising the fixed default value is more appropriate for the estimation of regional and global riverine N2 O emissions. The ratio of dissolved organic carbon to nitrate (DOC/NO3- ) and NO3- concentration are identified as the dominant predictors of region-specific EF5r values at both regional and global scales because stoichiometry and nutrients strictly regulate denitrification and N2 O production efficiency in rivers. A multiple linear regression model using DOC/NO3- and NO3- is proposed to predict region-specific EF5r values. The good fit of the model associated with easily obtained water quality variables allows its widespread application. This study fills a key knowledge gap in predicting region-specific EF5r values at the global scale and provides a pathway to estimate global riverine N2 O emissions more accurately based on IPCC methodology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Megan发布了新的文献求助10
1秒前
1秒前
07完成签到,获得积分10
1秒前
最狂小脑斧应助jimmyhui采纳,获得30
2秒前
怡米李发布了新的文献求助10
2秒前
丘比特应助Laus采纳,获得10
3秒前
orixero应助香山叶正红采纳,获得10
3秒前
Owen应助专一的书雪采纳,获得10
4秒前
4秒前
4秒前
hzs完成签到,获得积分10
4秒前
混沌完成签到,获得积分10
4秒前
耍酷小白菜完成签到,获得积分10
5秒前
唠叨的觅海完成签到,获得积分10
5秒前
5秒前
完美世界应助小云飘飘采纳,获得10
6秒前
6秒前
研友_VZG7GZ应助bofu采纳,获得10
7秒前
Passionfruit发布了新的文献求助10
7秒前
8秒前
9秒前
11完成签到,获得积分10
9秒前
9秒前
小甜甜发布了新的文献求助10
9秒前
9秒前
深情安青应助malewei采纳,获得10
10秒前
RowanLuo完成签到,获得积分10
10秒前
852应助scienceL采纳,获得10
10秒前
jia发布了新的文献求助10
10秒前
寒冷的断秋完成签到,获得积分10
10秒前
pzxixixi发布了新的文献求助10
10秒前
zyz1132完成签到,获得积分10
11秒前
麻雀发布了新的文献求助10
11秒前
yc发布了新的文献求助10
12秒前
新手上路完成签到,获得积分10
12秒前
13秒前
13秒前
牙膏完成签到,获得积分10
13秒前
潇洒的书文完成签到,获得积分10
13秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734840
求助须知:如何正确求助?哪些是违规求助? 3278768
关于积分的说明 10011520
捐赠科研通 2995441
什么是DOI,文献DOI怎么找? 1643442
邀请新用户注册赠送积分活动 781187
科研通“疑难数据库(出版商)”最低求助积分说明 749300