Indirect nitrous oxide emission factors of fluvial networks can be predicted by dissolved organic carbon and nitrate from local to global scales

一氧化二氮 温室气体 河流 环境科学 硝酸盐 环境化学 反硝化 溶解有机碳 溪流 氮气 水文学(农业) 大气科学 生态学 化学 地质学 生物 构造盆地 计算机科学 古生物学 有机化学 岩土工程 计算机网络
作者
Junfeng Wang,Gongqin Wang,Sibo Zhang,Yuan Xin,Chenrun Jiang,Shaoda Liu,Xiaojia He,William H. McDowell,Xinghui Xia
出处
期刊:Global Change Biology [Wiley]
卷期号:28 (24): 7270-7285 被引量:30
标识
DOI:10.1111/gcb.16458
摘要

Streams and rivers are important sources of nitrous oxide (N2 O), a powerful greenhouse gas. Estimating global riverine N2 O emissions is critical for the assessment of anthropogenic N2 O emission inventories. The indirect N2 O emission factor (EF5r ) model, one of the bottom-up approaches, adopts a fixed EF5r value to estimate riverine N2 O emissions based on IPCC methodology. However, the estimates have considerable uncertainty due to the large spatiotemporal variations in EF5r values. Factors regulating EF5r are poorly understood at the global scale. Here, we combine 4-year in situ observations across rivers of different land use types in China, with a global meta-analysis over six continents, to explore the spatiotemporal variations and controls on EF5r values. Our results show that the EF5r values in China and other regions with high N loads are lower than those for regions with lower N loads. Although the global mean EF5r value is comparable to the IPCC default value, the global EF5r values are highly skewed with large variations, indicating that adopting region-specific EF5r values rather than revising the fixed default value is more appropriate for the estimation of regional and global riverine N2 O emissions. The ratio of dissolved organic carbon to nitrate (DOC/NO3- ) and NO3- concentration are identified as the dominant predictors of region-specific EF5r values at both regional and global scales because stoichiometry and nutrients strictly regulate denitrification and N2 O production efficiency in rivers. A multiple linear regression model using DOC/NO3- and NO3- is proposed to predict region-specific EF5r values. The good fit of the model associated with easily obtained water quality variables allows its widespread application. This study fills a key knowledge gap in predicting region-specific EF5r values at the global scale and provides a pathway to estimate global riverine N2 O emissions more accurately based on IPCC methodology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
爆米花应助天真的棒棒糖采纳,获得10
1秒前
Jonathan发布了新的文献求助10
1秒前
科研通AI6应助寒冷天亦采纳,获得10
3秒前
汉堡包应助ooii采纳,获得10
5秒前
刘老板完成签到,获得积分10
5秒前
万能图书馆应助鲸鱼采纳,获得10
5秒前
NZH发布了新的文献求助20
6秒前
酷波er应助33采纳,获得30
6秒前
小白完成签到 ,获得积分10
7秒前
7秒前
SPU7发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
10秒前
12345678发布了新的文献求助10
11秒前
11秒前
12秒前
13秒前
13秒前
wanci应助季文婷采纳,获得10
15秒前
彧九发布了新的文献求助30
15秒前
15秒前
16秒前
16秒前
16秒前
忐忑的涛发布了新的文献求助10
16秒前
叶子宁发布了新的文献求助10
17秒前
djdsg完成签到,获得积分10
17秒前
xinxin发布了新的文献求助10
18秒前
18秒前
科研通AI6应助尘间雪采纳,获得10
18秒前
桐桐应助snowy_owl采纳,获得30
19秒前
19秒前
20秒前
20秒前
weifeng完成签到,获得积分10
21秒前
21秒前
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521661
求助须知:如何正确求助?哪些是违规求助? 4612952
关于积分的说明 14536550
捐赠科研通 4550467
什么是DOI,文献DOI怎么找? 2493708
邀请新用户注册赠送积分活动 1474837
关于科研通互助平台的介绍 1446243