亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Indirect nitrous oxide emission factors of fluvial networks can be predicted by dissolved organic carbon and nitrate from local to global scales

一氧化二氮 温室气体 河流 环境科学 硝酸盐 环境化学 反硝化 溶解有机碳 溪流 氮气 水文学(农业) 大气科学 生态学 化学 地质学 生物 构造盆地 计算机科学 古生物学 有机化学 岩土工程 计算机网络
作者
Junfeng Wang,Gongqin Wang,Sibo Zhang,Yuan Xin,Chenrun Jiang,Shaoda Liu,Xiaojia He,William H. McDowell,Xinghui Xia
出处
期刊:Global Change Biology [Wiley]
卷期号:28 (24): 7270-7285 被引量:30
标识
DOI:10.1111/gcb.16458
摘要

Streams and rivers are important sources of nitrous oxide (N2 O), a powerful greenhouse gas. Estimating global riverine N2 O emissions is critical for the assessment of anthropogenic N2 O emission inventories. The indirect N2 O emission factor (EF5r ) model, one of the bottom-up approaches, adopts a fixed EF5r value to estimate riverine N2 O emissions based on IPCC methodology. However, the estimates have considerable uncertainty due to the large spatiotemporal variations in EF5r values. Factors regulating EF5r are poorly understood at the global scale. Here, we combine 4-year in situ observations across rivers of different land use types in China, with a global meta-analysis over six continents, to explore the spatiotemporal variations and controls on EF5r values. Our results show that the EF5r values in China and other regions with high N loads are lower than those for regions with lower N loads. Although the global mean EF5r value is comparable to the IPCC default value, the global EF5r values are highly skewed with large variations, indicating that adopting region-specific EF5r values rather than revising the fixed default value is more appropriate for the estimation of regional and global riverine N2 O emissions. The ratio of dissolved organic carbon to nitrate (DOC/NO3- ) and NO3- concentration are identified as the dominant predictors of region-specific EF5r values at both regional and global scales because stoichiometry and nutrients strictly regulate denitrification and N2 O production efficiency in rivers. A multiple linear regression model using DOC/NO3- and NO3- is proposed to predict region-specific EF5r values. The good fit of the model associated with easily obtained water quality variables allows its widespread application. This study fills a key knowledge gap in predicting region-specific EF5r values at the global scale and provides a pathway to estimate global riverine N2 O emissions more accurately based on IPCC methodology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悟空爱吃酥橙完成签到,获得积分10
7秒前
11秒前
自律完成签到,获得积分10
25秒前
ma121完成签到,获得积分10
54秒前
科研通AI6应助科研通管家采纳,获得10
54秒前
科研通AI2S应助科研通管家采纳,获得10
54秒前
55秒前
1分钟前
刺1656发布了新的文献求助10
1分钟前
1分钟前
jiangmi完成签到,获得积分10
1分钟前
Sene完成签到,获得积分10
2分钟前
andrele应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
感动初蓝完成签到 ,获得积分10
3分钟前
橘橘橘子皮完成签到 ,获得积分10
3分钟前
3分钟前
蒙恩Maria发布了新的文献求助10
3分钟前
3分钟前
蒙恩Maria完成签到,获得积分10
3分钟前
Pattis完成签到 ,获得积分10
4分钟前
鲸鱼完成签到 ,获得积分10
4分钟前
英俊的铭应助科研通管家采纳,获得10
4分钟前
我是老大应助科研通管家采纳,获得10
4分钟前
bkagyin应助科研通管家采纳,获得10
4分钟前
moaner完成签到,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
优秀的甜菜完成签到,获得积分10
5分钟前
zznzn发布了新的文献求助10
5分钟前
Hello应助zznzn采纳,获得10
5分钟前
橘笙发布了新的文献求助10
6分钟前
Ricardo完成签到 ,获得积分10
6分钟前
6分钟前
橘笙完成签到,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
andrele应助科研通管家采纳,获得10
6分钟前
SciGPT应助科研通管家采纳,获得10
6分钟前
迷路的曼梅完成签到,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Exosomes Pipeline Insight, 2025 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671189
求助须知:如何正确求助?哪些是违规求助? 4912050
关于积分的说明 15134209
捐赠科研通 4829983
什么是DOI,文献DOI怎么找? 2586558
邀请新用户注册赠送积分活动 1540225
关于科研通互助平台的介绍 1498423