Deep learning-based prediction of effluent quality of a constructed wetland

人工神经网络 计算机科学 反向传播 深度学习 人工智能 水质 机器学习 数据预处理 流出物 数据挖掘 环境科学 环境工程 生态学 生物
作者
Bowen Yang,Zijie Xiao,Qingjie Meng,Yuan Yuan,Wenqian Wang,Haoyu Wang,Yongmei Wang,Xiaochi Feng
出处
期刊:Environmental science & ecotechnology [Elsevier BV]
卷期号:13: 100207-100207 被引量:29
标识
DOI:10.1016/j.ese.2022.100207
摘要

Data-driven approaches that make timely predictions about pollutant concentrations in the effluent of constructed wetlands are essential for improving the treatment performance of constructed wetlands. However, the effect of the meteorological condition and flow changes in a real scenario are generally neglected in water quality prediction. To address this problem, in this study, we propose an approach based on multi-source data fusion that considers the following indicators: water quality indicators, water quantity indicators, and meteorological indicators. In this study, we establish four representative methods to simultaneously predict the concentrations of three representative pollutants in the effluent of a practical large-scale constructed wetland: (1) multiple linear regression; (2) backpropagation neural network (BPNN); (3) genetic algorithm combined with the BPNN to solve the local minima problem; and (4) long short-term memory (LSTM) neural network to consider the influence of past results on the present. The results suggest that the LSTM-predicting model performed considerably better than the other deep neural network-based model or linear method, with a satisfactory R2. Additionally, given the huge fluctuation of different pollutant concentrations in the effluent, we used a moving average method to smooth the original data, which successfully improved the accuracy of traditional neural networks and hybrid neural networks. The results of this study indicate that the hybrid modeling concept that combines intelligent and scientific data preprocessing methods with deep learning algorithms is a feasible approach for forecasting water quality in the effluent of actual engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xiaoxiao完成签到,获得积分10
刚刚
刚刚
1秒前
忆之应助vvvvvvv采纳,获得50
1秒前
不安海蓝完成签到,获得积分10
1秒前
pluto完成签到,获得积分20
1秒前
1秒前
邵洋完成签到,获得积分10
2秒前
2秒前
脑洞疼应助陈畅采纳,获得10
2秒前
小巧的牛排完成签到,获得积分10
2秒前
俏皮的荔枝完成签到,获得积分10
2秒前
huahua完成签到,获得积分10
2秒前
小马甲应助能干觅夏采纳,获得10
2秒前
蓝桉完成签到,获得积分10
3秒前
搞怪的白云完成签到 ,获得积分10
3秒前
小陈要发一区完成签到,获得积分10
3秒前
李大白完成签到 ,获得积分10
3秒前
jianhua完成签到,获得积分10
4秒前
达菲完成签到,获得积分10
4秒前
英姑应助负责凛采纳,获得10
5秒前
Qyyy发布了新的文献求助30
5秒前
123应助WxChen采纳,获得10
5秒前
你怎么睡得着觉完成签到,获得积分10
5秒前
青阳发布了新的文献求助10
5秒前
6秒前
两半桃花发布了新的文献求助10
6秒前
zq发布了新的文献求助10
6秒前
周先森完成签到,获得积分10
6秒前
HDY完成签到,获得积分10
6秒前
萧秋灵完成签到,获得积分10
6秒前
体贴的苞络完成签到,获得积分10
7秒前
7秒前
xiaxiao应助TT采纳,获得80
7秒前
时间海完成签到,获得积分10
7秒前
科研通AI5应助FatheadCarp采纳,获得10
7秒前
赘婿应助无敌喷火龙采纳,获得10
8秒前
章鱼小丸子完成签到 ,获得积分10
9秒前
Aowu完成签到,获得积分10
9秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725665
求助须知:如何正确求助?哪些是违规求助? 3270537
关于积分的说明 9966775
捐赠科研通 2985784
什么是DOI,文献DOI怎么找? 1638024
邀请新用户注册赠送积分活动 777855
科研通“疑难数据库(出版商)”最低求助积分说明 747268