材料科学
热电效应
溶解度
兴奋剂
密度泛函理论
掺杂剂
带隙
声子散射
凝聚态物理
热导率
物理化学
计算化学
光电子学
热力学
复合材料
化学
物理
作者
Yuqi Liu,Xuemei Zhang,Pengfei Nan,Bo Zou,Qingtang Zhang,Yunxiang Hou,Shuang Li,Yaru Gong,Qingfeng Liu,Binghui Ge,Oana Cojocaru‐Mirédin,Yuan Yu,Yongsheng Zhang,Guang Chen,Matthias Wuttig,Guodong Tang
标识
DOI:10.1002/adfm.202209980
摘要
Abstract SnTe is an emerging Pb‐free thermoelectric compound that has drawn significant attention for clean energy conversion. Chemical doping is routinely used to tailor its charge carrier concentration and electronic band structures. However, the efficacy of dopants is often limited by their small solubility. For example, only 0.5% Ag can be incorporated into the SnTe matrix. Yet, significantly more Ag (>7%) can be dissolved if SnTe is alloyed with AgSbTe 2 . This large enhancement of solubility can be understood from a chemical bonding perspective. Both SnTe and AgSbTe 2 employ metavalent bonding as identified by an unusual bond‐rupture in atom probe tomography. Density functional theory calculations show that upon Ag doping the energy offset of the upmost two valence bands decreases significantly. This induces band alignment in SnTe, which results in an enhanced power factor over a broad temperature range. Moreover, the increased concentration of point defects and associated lattice strain lead to strong phonon scattering and softening, contributing to an extremely low κ L of 0.30 Wm −1 K −1 . These synergistic effects contribute to a peak ZT of 1.8 at 873 K and a record‐high average ZT of ≈1.0 between 400 and 873 K in Sn 0.87 Mn 0.08 Sb 0.08 Te–5%AgSbTe 2 alloy.
科研通智能强力驱动
Strongly Powered by AbleSci AI