Brain connectomics predict response to treatment in social anxiety disorder

连接组学 神经影像学 社交焦虑 连接体 静息状态功能磁共振成像 焦虑 心理学 医学 神经科学 精神科 功能连接
作者
Susan Whitfield‐Gabrieli,Satrajit Ghosh,Alfonso Nieto-Castañón,Zeynep M. Saygin,Oliver Doehrmann,Xiaoqian J. Chai,Gretchen Reynolds,Stefan G. Hofmann,Mark H. Pollack,John D. E. Gabrieli
出处
期刊:Molecular Psychiatry [Springer Nature]
卷期号:21 (5): 680-685 被引量:202
标识
DOI:10.1038/mp.2015.109
摘要

We asked whether brain connectomics can predict response to treatment for a neuropsychiatric disorder better than conventional clinical measures. Pre-treatment resting-state brain functional connectivity and diffusion-weighted structural connectivity were measured in 38 patients with social anxiety disorder (SAD) to predict subsequent treatment response to cognitive behavioral therapy (CBT). We used a priori bilateral anatomical amygdala seed-driven resting connectivity and probabilistic tractography of the right inferior longitudinal fasciculus together with a data-driven multivoxel pattern analysis of whole-brain resting-state connectivity before treatment to predict improvement in social anxiety after CBT. Each connectomic measure improved the prediction of individuals' treatment outcomes significantly better than a clinical measure of initial severity, and combining the multimodal connectomics yielded a fivefold improvement in predicting treatment response. Generalization of the findings was supported by leave-one-out cross-validation. After dividing patients into better or worse responders, logistic regression of connectomic predictors and initial severity combined with leave-one-out cross-validation yielded a categorical prediction of clinical improvement with 81% accuracy, 84% sensitivity and 78% specificity. Connectomics of the human brain, measured by widely available imaging methods, may provide brain-based biomarkers (neuromarkers) supporting precision medicine that better guide patients with neuropsychiatric diseases to optimal available treatments, and thus translate basic neuroimaging into medical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
满意白开水完成签到,获得积分20
1秒前
科研通AI5应助lllkkk采纳,获得10
2秒前
高贵冬卉发布了新的文献求助10
3秒前
33发布了新的文献求助30
3秒前
5秒前
ding应助lllth采纳,获得10
8秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
温暖砖头发布了新的文献求助10
11秒前
茶树菇发布了新的文献求助10
12秒前
Rabbit完成签到 ,获得积分10
13秒前
燧人氏发布了新的文献求助10
14秒前
哆来米完成签到,获得积分10
14秒前
项锡凯完成签到 ,获得积分10
16秒前
18秒前
wang完成签到,获得积分10
19秒前
wang发布了新的文献求助20
23秒前
无私啤酒完成签到,获得积分10
24秒前
lllkkk发布了新的文献求助10
24秒前
24秒前
26秒前
瘦瘦白薇发布了新的文献求助10
26秒前
小马甲应助33采纳,获得30
27秒前
赵文浩应助LingYun采纳,获得30
27秒前
魏头头发布了新的文献求助10
28秒前
袁保蓉发布了新的文献求助10
30秒前
充电宝应助曲幻梅采纳,获得10
31秒前
eric888应助eden采纳,获得30
32秒前
高贵冬卉完成签到 ,获得积分10
33秒前
我是老大应助科研通管家采纳,获得10
33秒前
33秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
科研通AI6应助科研通管家采纳,获得10
34秒前
浮游应助科研通管家采纳,获得10
34秒前
Downey应助科研通管家采纳,获得150
34秒前
共享精神应助茶树菇采纳,获得10
34秒前
JamesPei应助科研通管家采纳,获得10
34秒前
脑洞疼应助科研通管家采纳,获得20
34秒前
桐桐应助科研通管家采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5049387
求助须知:如何正确求助?哪些是违规求助? 4277396
关于积分的说明 13333673
捐赠科研通 4092082
什么是DOI,文献DOI怎么找? 2239476
邀请新用户注册赠送积分活动 1246338
关于科研通互助平台的介绍 1174900