Brain connectomics predict response to treatment in social anxiety disorder

连接组学 神经影像学 社交焦虑 连接体 静息状态功能磁共振成像 焦虑 心理学 医学 神经科学 精神科 功能连接
作者
Susan Whitfield‐Gabrieli,Satrajit Ghosh,Alfonso Nieto-Castañón,Zeynep M. Saygin,Oliver Doehrmann,Xiaoqian J. Chai,Gretchen Reynolds,Stefan G. Hofmann,Mark H. Pollack,John D. E. Gabrieli
出处
期刊:Molecular Psychiatry [Springer Nature]
卷期号:21 (5): 680-685 被引量:177
标识
DOI:10.1038/mp.2015.109
摘要

We asked whether brain connectomics can predict response to treatment for a neuropsychiatric disorder better than conventional clinical measures. Pre-treatment resting-state brain functional connectivity and diffusion-weighted structural connectivity were measured in 38 patients with social anxiety disorder (SAD) to predict subsequent treatment response to cognitive behavioral therapy (CBT). We used a priori bilateral anatomical amygdala seed-driven resting connectivity and probabilistic tractography of the right inferior longitudinal fasciculus together with a data-driven multivoxel pattern analysis of whole-brain resting-state connectivity before treatment to predict improvement in social anxiety after CBT. Each connectomic measure improved the prediction of individuals' treatment outcomes significantly better than a clinical measure of initial severity, and combining the multimodal connectomics yielded a fivefold improvement in predicting treatment response. Generalization of the findings was supported by leave-one-out cross-validation. After dividing patients into better or worse responders, logistic regression of connectomic predictors and initial severity combined with leave-one-out cross-validation yielded a categorical prediction of clinical improvement with 81% accuracy, 84% sensitivity and 78% specificity. Connectomics of the human brain, measured by widely available imaging methods, may provide brain-based biomarkers (neuromarkers) supporting precision medicine that better guide patients with neuropsychiatric diseases to optimal available treatments, and thus translate basic neuroimaging into medical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小布丁完成签到,获得积分10
刚刚
刚刚
66发布了新的文献求助10
刚刚
科研通AI2S应助雪白开山采纳,获得10
刚刚
Owen应助风中夜天采纳,获得10
刚刚
klio完成签到 ,获得积分10
2秒前
2秒前
研友_Zeg9BL发布了新的文献求助10
2秒前
Loneranger发布了新的文献求助10
3秒前
小杨完成签到,获得积分10
3秒前
勤恳的猕猴桃完成签到,获得积分10
3秒前
3秒前
3秒前
panpan完成签到,获得积分10
3秒前
4秒前
ikun0000发布了新的文献求助10
4秒前
Yjj发布了新的文献求助10
4秒前
tianzml0应助科研通管家采纳,获得10
4秒前
tianzml0应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
tianzml0应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
几酌应助科研通管家采纳,获得20
4秒前
4秒前
4秒前
Yubaibaio发布了新的文献求助10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
0ne222完成签到,获得积分10
5秒前
研友_VZG7GZ应助追寻皮卡丘采纳,获得10
5秒前
大模型应助罗元正采纳,获得10
5秒前
6秒前
6秒前
天人合一完成签到,获得积分0
6秒前
7秒前
MCS发布了新的文献求助10
7秒前
酷酷问雁完成签到,获得积分10
8秒前
研友_Zeg9BL完成签到,获得积分10
8秒前
wry完成签到,获得积分10
8秒前
8秒前
小杨发布了新的文献求助10
8秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167852
求助须知:如何正确求助?哪些是违规求助? 2819220
关于积分的说明 7925634
捐赠科研通 2479112
什么是DOI,文献DOI怎么找? 1320642
科研通“疑难数据库(出版商)”最低求助积分说明 632856
版权声明 602443