Brain connectomics predict response to treatment in social anxiety disorder

连接组学 神经影像学 社交焦虑 连接体 静息状态功能磁共振成像 焦虑 心理学 医学 神经科学 精神科 功能连接
作者
Susan Whitfield‐Gabrieli,Satrajit Ghosh,Alfonso Nieto-Castañón,Zeynep M. Saygin,Oliver Doehrmann,Xiaoqian J. Chai,Gretchen Reynolds,Stefan G. Hofmann,Mark H. Pollack,John D. E. Gabrieli
出处
期刊:Molecular Psychiatry [Springer Nature]
卷期号:21 (5): 680-685 被引量:202
标识
DOI:10.1038/mp.2015.109
摘要

We asked whether brain connectomics can predict response to treatment for a neuropsychiatric disorder better than conventional clinical measures. Pre-treatment resting-state brain functional connectivity and diffusion-weighted structural connectivity were measured in 38 patients with social anxiety disorder (SAD) to predict subsequent treatment response to cognitive behavioral therapy (CBT). We used a priori bilateral anatomical amygdala seed-driven resting connectivity and probabilistic tractography of the right inferior longitudinal fasciculus together with a data-driven multivoxel pattern analysis of whole-brain resting-state connectivity before treatment to predict improvement in social anxiety after CBT. Each connectomic measure improved the prediction of individuals' treatment outcomes significantly better than a clinical measure of initial severity, and combining the multimodal connectomics yielded a fivefold improvement in predicting treatment response. Generalization of the findings was supported by leave-one-out cross-validation. After dividing patients into better or worse responders, logistic regression of connectomic predictors and initial severity combined with leave-one-out cross-validation yielded a categorical prediction of clinical improvement with 81% accuracy, 84% sensitivity and 78% specificity. Connectomics of the human brain, measured by widely available imaging methods, may provide brain-based biomarkers (neuromarkers) supporting precision medicine that better guide patients with neuropsychiatric diseases to optimal available treatments, and thus translate basic neuroimaging into medical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助微凉采纳,获得10
1秒前
1秒前
1秒前
taotao216发布了新的文献求助10
1秒前
星辰大海应助生活的花采纳,获得10
1秒前
科目三应助科研工作者采纳,获得10
1秒前
2秒前
言言完成签到,获得积分10
2秒前
科研通AI6应助yyy采纳,获得10
3秒前
HOAN应助是帆帆呀采纳,获得30
4秒前
HAOHAO发布了新的文献求助10
4秒前
qqw完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
5秒前
王芋圆完成签到,获得积分10
5秒前
稀饭完成签到,获得积分10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
6秒前
whisper发布了新的文献求助10
6秒前
在水一方应助科研通管家采纳,获得10
7秒前
畅快的乐松完成签到 ,获得积分10
7秒前
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
bkagyin应助杨忆枫采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
BowieHuang应助科研通管家采纳,获得10
8秒前
深呼吸发布了新的文献求助10
8秒前
称心绿柏应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
无花果应助科研通管家采纳,获得10
9秒前
小宋发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894