Brain connectomics predict response to treatment in social anxiety disorder

连接组学 神经影像学 社交焦虑 连接体 静息状态功能磁共振成像 焦虑 心理学 医学 神经科学 精神科 功能连接
作者
Susan Whitfield‐Gabrieli,Satrajit Ghosh,Alfonso Nieto-Castañón,Zeynep M. Saygin,Oliver Doehrmann,Xiaoqian J. Chai,Gretchen Reynolds,Stefan G. Hofmann,Mark H. Pollack,John D. E. Gabrieli
出处
期刊:Molecular Psychiatry [Springer Nature]
卷期号:21 (5): 680-685 被引量:177
标识
DOI:10.1038/mp.2015.109
摘要

We asked whether brain connectomics can predict response to treatment for a neuropsychiatric disorder better than conventional clinical measures. Pre-treatment resting-state brain functional connectivity and diffusion-weighted structural connectivity were measured in 38 patients with social anxiety disorder (SAD) to predict subsequent treatment response to cognitive behavioral therapy (CBT). We used a priori bilateral anatomical amygdala seed-driven resting connectivity and probabilistic tractography of the right inferior longitudinal fasciculus together with a data-driven multivoxel pattern analysis of whole-brain resting-state connectivity before treatment to predict improvement in social anxiety after CBT. Each connectomic measure improved the prediction of individuals' treatment outcomes significantly better than a clinical measure of initial severity, and combining the multimodal connectomics yielded a fivefold improvement in predicting treatment response. Generalization of the findings was supported by leave-one-out cross-validation. After dividing patients into better or worse responders, logistic regression of connectomic predictors and initial severity combined with leave-one-out cross-validation yielded a categorical prediction of clinical improvement with 81% accuracy, 84% sensitivity and 78% specificity. Connectomics of the human brain, measured by widely available imaging methods, may provide brain-based biomarkers (neuromarkers) supporting precision medicine that better guide patients with neuropsychiatric diseases to optimal available treatments, and thus translate basic neuroimaging into medical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AGuang应助ED采纳,获得200
刚刚
豪士赋完成签到,获得积分10
1秒前
杨小黑发布了新的文献求助10
1秒前
法芙娜发布了新的文献求助10
1秒前
三七完成签到,获得积分10
3秒前
3秒前
judy891zhu完成签到,获得积分10
3秒前
4秒前
4秒前
自由正豪完成签到,获得积分10
4秒前
在水一方应助水中鱼采纳,获得10
4秒前
4秒前
脑洞疼应助欣慰宛菡采纳,获得10
5秒前
5秒前
小蘑菇应助xiaoshuai采纳,获得10
5秒前
Ava应助香云采纳,获得10
6秒前
丘比特应助Jane采纳,获得10
6秒前
搜集达人应助小于采纳,获得10
6秒前
beyondjun完成签到,获得积分10
6秒前
6秒前
6秒前
逆流的鱼完成签到 ,获得积分10
7秒前
乐正亦寒完成签到 ,获得积分10
7秒前
dong应助Ogai采纳,获得10
8秒前
Jasper应助市不辣采纳,获得10
8秒前
李健的小迷弟应助zmj采纳,获得10
8秒前
小先生发布了新的文献求助10
9秒前
晓晓完成签到,获得积分10
9秒前
Yuanyuan发布了新的文献求助10
9秒前
beyondjun发布了新的文献求助10
10秒前
YuHang发布了新的文献求助10
10秒前
牛奶发布了新的文献求助10
10秒前
11秒前
清明发布了新的文献求助10
11秒前
12秒前
12秒前
汉堡包应助没烦恼小婷采纳,获得10
12秒前
领导范儿应助晓晓采纳,获得10
12秒前
13秒前
乙醇完成签到 ,获得积分10
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961973
求助须知:如何正确求助?哪些是违规求助? 3508240
关于积分的说明 11139976
捐赠科研通 3240869
什么是DOI,文献DOI怎么找? 1791091
邀请新用户注册赠送积分活动 872726
科研通“疑难数据库(出版商)”最低求助积分说明 803352