This study investigated the dissolution-based toxicity mechanism for silver nanoparticles to Escherichia coli K12. The silver nanoparticles, synthesised in the vapour phase, are effective anti-bacterial agents against the Gram-negative bacterium, E. coli K12. The nanoparticles associate with the bacterial cell wall, appearing to interact with the outer and inner membranes, and then dissolve to release Ag+ into the cell and affect a transcriptional response. The dissolution of these nanoparticles in a modified LB medium was measured by inductively coupled plasma mass spectrometry (ICP-MS) and has been shown to follow a simple first-order dissolution process proportional to the decreasing surface area of the nanoparticles. However, the resulting solution phase concentration of Ag+, demonstrated by the ICP-MS data, is not sufficient to cause the observed effects, including inhibition of bacterial growth and the differential expression of Cu+ stress response genes. These data indicate that dissolution at the cell membrane is the primary mechanism of action of silver nanoparticles, and the Ag+ concentration released into the bulk solution phase has only limited anti-bacterial efficacy.