转基因生物
基质(化学分析)
计算机科学
素数(序理论)
集合(抽象数据类型)
计算生物学
生物技术
生化工程
生物
生物系统
数学
化学
工程类
遗传学
色谱法
基因
程序设计语言
组合数学
作者
Marc Van den Bulcke,Antoon Lievens,Elodie Barbau-Piednoir,Guillaume Mbongolo-Mbella,Nancy H. C. Roosens,Myriam Sneyers,Amaya Leunda Casi
标识
DOI:10.1007/s00216-009-3286-7
摘要
The detection of genetically modified (GM) materials in food and feed products is a complex multi-step analytical process invoking screening, identification, and often quantification of the genetically modified organisms (GMO) present in a sample. "Combinatory qPCR SYBRGreen screening" (CoSYPS) is a matrix-based approach for determining the presence of GM plant materials in products. The CoSYPS decision-support system (DSS) interprets the analytical results of SYBRGREEN qPCR analysis based on four values: the C(t)- and T(m) values and the LOD and LOQ for each method. A theoretical explanation of the different concepts applied in CoSYPS analysis is given (GMO Universe, "Prime number tracing", matrix/combinatory approach) and documented using the RoundUp Ready soy GTS40-3-2 as an example. By applying a limited set of SYBRGREEN qPCR methods and through application of a newly developed "prime number"-based algorithm, the nature of subsets of corresponding GMO in a sample can be determined. Together, these analyses provide guidance for semi-quantitative estimation of GMO presence in a food and feed product.
科研通智能强力驱动
Strongly Powered by AbleSci AI