生物信息学
计算生物学
同源建模
对接(动物)
细胞色素P450
基因亚型
分子动力学
分子模型
化学
生物化学
生物
新陈代谢
计算化学
酶
基因
医学
护理部
作者
Jessica Elena Mendieta-Wejebe,José Correa‐Basurto,Erika M. Garcia-Segovia,Gisela Ceballos‐Cancino,Martha Cecilia Rosales‐Hernández
出处
期刊:Current Drug Metabolism
[Bentham Science]
日期:2011-07-01
卷期号:12 (6): 533-548
被引量:8
标识
DOI:10.2174/138920011795713670
摘要
Cytochrome P450 (CYP) 2C9 is the principal isoform of the CYP2C subfamily in the human liver and is involved in the oxidation of several endogenous and xenobiotic compounds, including many therapeutic drugs. The metabolism of drugs by CYP2C9 can yield either safe or toxic products, which may be related to the recognition and binding modes of the substrates to this isoform. These interactions can be studied using in silico methods such as quantum chemistry, molecular dynamics and docking simulations, which can also be useful for predicting the structure of metabolites. In these types of studies, the ligand and the protein must be tridimensional models; thus, the protein can be built by homology modeling or retrieved from the Protein Data Bank. Therefore, the current review emphasizes the importance of using in silico methods to predict the metabolism of CYP2C9 because these computational tools have allowed the description of the principal characteristics of the active site of this isoform at the molecular level and the chemical properties of its ligands. Keywords: Cytochrome P-450 (CYP), CYP2C9, docking simulations, drug metabolism, homology modeling, molecular dynamics simulations, ligands, in silico, Protein Data Bank
科研通智能强力驱动
Strongly Powered by AbleSci AI