神经影像学
正电子发射断层摄影术
神经科学
磁共振成像
功能磁共振成像
神经功能成像
心理学
白质
灰质
功能成像
静息状态功能磁共振成像
大脑定位
医学
放射科
作者
Stefan Desmyter,C. van Heeringen,Kurt Audenaert
标识
DOI:10.1016/j.pnpbp.2010.12.026
摘要
Suicidality is a major challenge for today's health care. Evidence suggests that there are differences in cognitive functioning of suicidal patients but the knowledge about the underlying neurobiology is limited. Brain imaging offers the advantage of a non-invasive in vivo direct estimation of detailed brain structure, regional brain functioning and estimation of molecular processes in the brain. We have reviewed the literature on neuroimaging studies of the suicidal brain. This article contains studies on structural imaging such as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) and functional imaging, consisting of Positron Emission Tomography (PET), Single Photon Emission Tomography (SPECT) and functional MRI (fMRI). We classified the results of the different imaging modalities in structural and functional imaging. Within our research, we found no significant differences in the suicidal brain demonstrated by Computed Tomography. Magnetic Resonance Imaging studies in subjects with a history of suicide attempt on the other hand deliver differing results, mostly pointing at a higher prevalence of white (especially deep white matter and periventricular) and grey matter hyperintensities in the frontal, temporal and/or parietal lobe and decreased volumes in the frontal and temporal lobe. There seems to be a trend towards findings of reduced grey matter volume in the frontal lobe. Overall, there is no consensus of opinion on structural imaging of the suicidal brain. Research on functional imaging is further divided into studies in resting state, studies in activation conditions and studies on brain neurotransmitters, transporters and receptors. A common finding in functional neuroimaging in resting conditions is a decreased perfusion in the prefrontal cortex of suicidal patients. During cognitive activation, perfusion deficits in the prefrontal cortex have been observed. After fenfluramine challenge, the prefrontal cortex metabolism seems to be inversely correlated to the lethality of previous suicide attempt. The few studies that examined the serotonin transporter in suicide found no significant differences in binding potential. In suicide attempters there seems to be a negative correlation between impulsivity and SERT binding. Our group found a reduced 5-HT2A binding in the frontal cortex in patients with a recent suicide attempt. The binding index was significantly lower in the deliberate self injury patients compared to the deliberate self poisoning patients. The few authors that examined DAT binding in suicide found no significant DAT differences between patients and controls. However they demonstrated significant negative correlations between DAT binding potential and mental energy among suicide attempters, but not in healthy control subjects. We did not find studies measuring the binding potential of the noradrenalin or gamma amino butyric acid transporter or receptor in suicidal subjects. Several reports have suggested abnormalities of GABA neurotransmission in depression. During our literature search, we have focused on neuroimaging studies in suicidal populations, but in the absence of evidence in the literature on this group or when further collateral evidence is appropriate, this overview expands to results in impulsive aggressive or in depressed subjects.
科研通智能强力驱动
Strongly Powered by AbleSci AI