Integrated building energy computational fluid dynamics simulation for estimating the energy-saving effect of energy recovery ventilator with CO2 demand-controlled ventilation system in office space

通风(建筑) 计算流体力学 气流 能量回收通风 热舒适性 高效能源利用 室内空气质量 天花板(云) 模拟 环境科学 建筑能耗模拟 汽车工程 工程类 暖通空调 环境工程 机械工程 空调 能源性能 气象学 结构工程 电气工程 航空航天工程 物理
作者
Yunqing Fan,Kazuhide Ito
出处
期刊:Indoor and Built Environment [SAGE]
卷期号:23 (6): 785-803 被引量:38
标识
DOI:10.1177/1420326x13494034
摘要

As ventilation is one of the critical heat loads in an office space, the ventilation rate might be optimized to develop sustainable, low-energy buildings and a healthy indoor environment. To create comprehensive and optimized indoor environmental designs, a building energy simulation (BES)-computational fluid dynamics (CFD)-integrated simulation is used to provide accurate and informative prediction of the thermal and air-quality performance in buildings, especially in the design stage. With the aim of developing an optimization procedure for the ventilation rate, this paper presents simulations that integrates BES and CFD with CO 2 demand-controlled ventilation (DCV) system, and applies them to a typical office space in Japan to optimize the ventilation rate through an energy recovery ventilator (ERV). The transient system control strategy is applied to two different airflow conditions in an office: a traditional ceiling supply system and an under-floor air distribution system. Compared with the fixed outdoor air intake rate, which is referred to as constant air volume ventilation, optimized ventilation systems associated with a CO 2 DCV produces energy savings of 11.6% and 24.1%, respectively. The difference in the energy saving effects of the two ventilation systems is caused by the difference in the ventilation efficiency in the occupied zone. The ventilation rate and ventilation efficiency have a significant impact on the energy penalty of an ERV. Therefore, optimizing the ventilation rate according to a CO 2 DCV system with an appropriate airflow pattern could contribute to both creating and maintaining a healthy, comfortable environment, in addition to saving energy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王大炮完成签到 ,获得积分10
刚刚
不厌完成签到,获得积分10
1秒前
feifei关注了科研通微信公众号
1秒前
2秒前
香菜完成签到,获得积分20
2秒前
鲸是海蓝色完成签到 ,获得积分10
2秒前
英姑应助xhy采纳,获得10
2秒前
2秒前
2秒前
3秒前
3秒前
4秒前
4秒前
郑开司09发布了新的文献求助10
4秒前
黄紫红蓝发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
6秒前
camera完成签到 ,获得积分20
6秒前
zino发布了新的文献求助10
6秒前
reck发布了新的文献求助10
7秒前
7秒前
苹果追命完成签到,获得积分20
8秒前
8秒前
烟花应助8564523采纳,获得10
8秒前
lkl完成签到 ,获得积分10
8秒前
01259发布了新的文献求助10
9秒前
9秒前
金子完成签到,获得积分10
9秒前
阳光下的星星完成签到,获得积分10
9秒前
顾己发布了新的文献求助10
9秒前
搁浅发布了新的文献求助10
9秒前
大桶水果茶完成签到,获得积分10
9秒前
闪闪飞机发布了新的文献求助10
10秒前
打打应助蔡蔡不菜菜采纳,获得10
10秒前
艺玲发布了新的文献求助10
10秒前
11秒前
坚果发布了新的文献求助10
11秒前
宋嬴一发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672