Integrated building energy computational fluid dynamics simulation for estimating the energy-saving effect of energy recovery ventilator with CO2 demand-controlled ventilation system in office space

通风(建筑) 计算流体力学 气流 能量回收通风 热舒适性 高效能源利用 室内空气质量 天花板(云) 模拟 环境科学 建筑能耗模拟 汽车工程 工程类 暖通空调 环境工程 机械工程 空调 能源性能 气象学 结构工程 电气工程 航空航天工程 物理
作者
Yunqing Fan,Kazuhide Ito
出处
期刊:Indoor and Built Environment [SAGE]
卷期号:23 (6): 785-803 被引量:38
标识
DOI:10.1177/1420326x13494034
摘要

As ventilation is one of the critical heat loads in an office space, the ventilation rate might be optimized to develop sustainable, low-energy buildings and a healthy indoor environment. To create comprehensive and optimized indoor environmental designs, a building energy simulation (BES)-computational fluid dynamics (CFD)-integrated simulation is used to provide accurate and informative prediction of the thermal and air-quality performance in buildings, especially in the design stage. With the aim of developing an optimization procedure for the ventilation rate, this paper presents simulations that integrates BES and CFD with CO 2 demand-controlled ventilation (DCV) system, and applies them to a typical office space in Japan to optimize the ventilation rate through an energy recovery ventilator (ERV). The transient system control strategy is applied to two different airflow conditions in an office: a traditional ceiling supply system and an under-floor air distribution system. Compared with the fixed outdoor air intake rate, which is referred to as constant air volume ventilation, optimized ventilation systems associated with a CO 2 DCV produces energy savings of 11.6% and 24.1%, respectively. The difference in the energy saving effects of the two ventilation systems is caused by the difference in the ventilation efficiency in the occupied zone. The ventilation rate and ventilation efficiency have a significant impact on the energy penalty of an ERV. Therefore, optimizing the ventilation rate according to a CO 2 DCV system with an appropriate airflow pattern could contribute to both creating and maintaining a healthy, comfortable environment, in addition to saving energy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
清爽老九应助风的忧伤采纳,获得10
1秒前
BBQ完成签到,获得积分10
1秒前
华仔应助zz采纳,获得10
5秒前
幽默绿草发布了新的文献求助10
6秒前
247793325发布了新的文献求助10
6秒前
huang完成签到,获得积分10
6秒前
Akim应助闵一一采纳,获得10
6秒前
陌路发布了新的文献求助10
7秒前
7秒前
7秒前
研友_VZG7GZ应助124332采纳,获得80
8秒前
小蘑菇应助124332采纳,获得10
8秒前
小蘑菇应助124332采纳,获得10
8秒前
222发布了新的文献求助10
10秒前
11秒前
ning发布了新的文献求助10
11秒前
BBQ发布了新的文献求助10
12秒前
superworm1发布了新的文献求助10
12秒前
12秒前
HMM完成签到,获得积分10
13秒前
大个应助大漠配孤烟采纳,获得30
13秒前
王杰发布了新的文献求助10
14秒前
结草衔环完成签到,获得积分10
15秒前
crazy完成签到 ,获得积分10
15秒前
燕燕完成签到 ,获得积分10
16秒前
16秒前
16秒前
酷波er应助222采纳,获得10
17秒前
周子航完成签到,获得积分10
17秒前
小邹发布了新的文献求助10
18秒前
orixero应助叶远望采纳,获得10
19秒前
19秒前
19秒前
华hua发布了新的文献求助10
21秒前
21秒前
彭于晏应助陌路采纳,获得10
22秒前
神雕侠完成签到,获得积分10
22秒前
mhl11应助宇宙之大采纳,获得10
22秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3315307
求助须知:如何正确求助?哪些是违规求助? 2947285
关于积分的说明 8535103
捐赠科研通 2623400
什么是DOI,文献DOI怎么找? 1435028
科研通“疑难数据库(出版商)”最低求助积分说明 665445
邀请新用户注册赠送积分活动 651155